102 research outputs found

    SysCom Indien 2007-2022. Langzeitvergleich von biologischen und konventionellen Anbausystemen in der Baumwollfruchtfolge

    Get PDF
    Langzeitvergleich von biologischen und konventionellen Anbausystemen in der Baumwollfruchtfolge

    What socially motivates farmers to grow organic cotton in central India?

    Get PDF
    India is the largest producer of ‘organic cotton’, as it contributes about three quarters (74%) to the global organic cotton production. The Nimar valley of Madhya Pradesh in central India is important region for organic cotton production. In general, cotton yields are low and variable in the Nimar valley and often do not reach the attainable levels on several farms of the region. With a steeply increasing demand for organic fibre, it is important to safeguard and increase the production of organic cotton in a sustainable manner. The precise understanding of social and biophysical motivations of different farmers for following their respective farming practices is of high importance for sustainable future of organic cotton in central India. The study of the facts related to adoption of organic cotton production systems in the Nimar valley is particularly valuable for policy makers, smallholder farmers and sourcing organizations

    A Diagnosis of Biophysical and Socio-Economic Factors Influencing Farmers’ Choice to Adopt Organic or Conventional Farming Systems for Cotton Production

    Get PDF
    Organic agriculture is one of the most widely known alternative production systems advocated for its benefits to soil, environment, health and economic well-being of farming communities. Rapid increase in the market demand for organic products presents a remarkable opportunity for expansion of organic agriculture. A thorough understanding of the context specific motivations of farmers for adoption of organic farming systems is important so that appropriate policy measures are put in place. With an aim of understanding the social and biophysical motivations of organic and conventional cotton farmers for following their respective farming practices, a detailed farm survey was conducted in Nimar valley of Madhya Pradesh state in central India. The study area was chosen for being an important region for cotton production, where established organic and conventional farms operate under comparable circumstances. We found considerable variation among organic and conventional farmers for their social and biophysical motivations. Organic farmers were motivated by the sustainability of cotton production and growing safer food without pesticides, whereas conventional farmers were sensitive about their reputation in community. Organic farmers with larger holdings were more concerned about closed nutrient cycles and reducing their dependence on external inputs, whereas medium and small holding organic farmers were clearly motivated by the premium price of organic cotton. Higher productivity was the only important motivation for conventional farmers with larger land holdings. We also found considerable yield gaps among different farms, both under conventional and organic management, that need to be addressed through extension and training. Our findings suggest that research and policy measures need to be directed toward strengthening of extension services, local capacity building, enhancing availability of suitable inputs and market access for organic farmers

    Extent of Bollworm and Sucking Pest Damage on Modern and Traditional Cotton Species and Potential for Breeding in Organic Cotton

    Get PDF
    Resistance against cotton bollworm is one of the main arguments for the use of genetically modified (GM) Bt cotton around the globe. The use of GM is prohibited in organic systems and thus the remunerative value of organic cotton cultivation depends on effective bollworm control. In this study, we investigated the extent of bollworm and sucking pest damage in 68 different hybrid and varietal lines of Gossypium hirsutum and varietal lines of G. arboreum at two different locations with contrasting soil fertility and water dynamics. The damage potential of bollworms was assessed from open capsules at two time points. Sucking pests were assessed at three time points using a scoring method. G. arboreum varietal lines and G. hirsutum hybrids were on average significantly more tolerant than G. hirsutum varietal lines to bollworm under fertile and irrigated situations. For sucking pests, the G. arboreum varietal lines were clearly more tolerant than G. hirsutum hybrids and varietal lines. Since, recently, pink bollworm (Pectinophora gossypiella) became resistant against Bt cotton and pressure of sucking pests severely increased, screening of genetic resources and systems-based cotton breeding for bollworm and sucking pest tolerance will improve sustainability of organic and conventional cotton production

    Soil Biological Activity Contributing to Phosphorus Availability in Vertisols under Long-Term Organic and Conventional Agricultural Management

    Get PDF
    Mobilization of unavailable phosphorus (P) to plant available P is a prerequisite to sustain crop productivity. Although most of the agricultural soils have sufficient amounts of phosphorus, low availability of native soil P remains a key limiting factor to increasing crop productivity. Solubilization and mineralization of applied and native P to plant available form is mediated through a number of biological and biochemical processes that are strongly influenced by soil carbon/organic matter, besides other biotic and abiotic factors. Soils rich in organic matter are expected to have higher P availability potentially due to higher biological activity. In conventional agricultural systems mineral fertilizers are used to supply P for plant growth, whereas organic systems largely rely on inputs of organic origin. The soils under organic management are supposed to be biologically more active and thus possess a higher capability to mobilize native or applied P. In this study we compared biological activity in soil of a long-term farming systems comparison field trial in vertisols under a subtropical (semi-arid) environment. Soil samples were collected from plots under 7 years of organic and conventional management at five different time points in soybean (Glycine max) -wheat (Triticum aestivum) crop sequence including the crop growth stages of reproductive significance. Upon analysis of various soil biological properties such as dehydrogenase, ÎČ-glucosidase, acid and alkaline phosphatase activities, microbial respiration, substrate induced respiration, soil microbial biomass carbon, organically managed soils were found to be biologically more active particularly at R2 stage in soybean and panicle initiation stage in wheat. We also determined the synergies between these biological parameters by using the methodology of principle component analysis. At all sampling points, P availability in organic and conventional systems was comparable. Our findings clearly indicate that owing to higher biological activity, organic systems possess equal capabilities of supplying P for crop growth as are conventional systems with inputs of mineral P fertilizers

    Can organic agriculture contribute to sustainable development in the tropics?

    Get PDF
    Agricultural intensification over last decades has resulted in a great increase of crop yields, but it also had a detrimental impact on biodiversity. The dramatic decline of arable weed diversity is a matter of great concern because weeds have an important ecological function as a key component of the food web of agroecosystems. Weeds are suitable indicators of management effects on wildlife diversity in arable crops because they have high sensitivity to cultivation measures and have a strong relation to other organism groups. Nevertheless, the effect of farming management on weed abundance and diversity will be more reliable on weed seed bank rather than on aboveground weed community because it is the result of processes that have occurred in the past and consequently, it could better reflect the effect of the agricultural practices over the years

    Technical efficiencies and yield variability are comparable across organic and conventional farms

    Get PDF
    Cotton is essentially a smallholder crop across tropical countries. Being a major cash crop, it plays a decisive role in the livelihoods of cotton-producing farmers. Both conventional and organic production systems offer alternative yet interesting propositions to cotton farmers. This study was conducted in Nimar valley, a prominent cotton-producing region of central India, with the aim of categorically evaluating the contribution of management and fixed factors to productivity on conventional and organic cotton farms. A study framework was developed considering the fixed factors, which cannot be altered within reasonable limits of time, capacity and resources, e.g., landholding or years of age and/or practice; and management factors, which can be altered/influenced within a reasonable time by training, practice and implementation. Using this framework, a structured survey of conventional and organic farms operating under comparable circumstances was conducted. Landholding and soil types were significant contributors/predictors of yield on organic farms. In contrast, landholding was not the main factor related to yields on conventional farms, which produced the highest yields when led by farmers with more than five years of formal education and living in a joint family. Nitrogen application, the source of irrigation (related to timely and adequate supply), crop rotation and variables related to adequate plant population (seed source, germination rate and plant thinning) were the main management factors limiting cotton yields among conventional and organic farms. Both organic and conventional farms in the Nimar valley exhibited a similar pattern of variation in cotton yields and technical efficiency. This study highlights the enormous scope for improving cotton productivity in the region by improving technical efficiency, strengthening extension services and making appropriate policy interventions

    Recent Advances in Drumstick (Moringa oleifera) Leaves Bioactive Compounds: Composition, Health BeneïŹts, Bioaccessibility, and Dietary Applications

    Get PDF
    Based on the availability of many nutrients, Moringa oleifera tree leaves have been widely employed as nutrients and nutraceuticals in recent years. The leaves contain a small amount of anti-nutritional factors and are abundant in innumerable bioactive compounds. Recently, in several in vivo and in vitro investigations, moringa leaves’ bioactive components and functionality are highlighted. Moringa leaves provide several health advantages, including anti-diabetic, antibacterial, anti-cancer, and anti-inflammatory properties. The high content of phytochemicals, carotenoids, and glucosinolates is responsible for the majority of these activities as reported in the literature. Furthermore, there is growing interest in using moringa as a value-added ingredient in the development of functional foods. Despite substantial study into identifying and measuring these beneficial components from moringa leaves, bioaccessibility and bioavailability studies are lacking. This review emphasizes recent scientific evidence on the dietary and bioactive profiles of moringa leaves, bioavailability, health benefits, and applications in various food products. This study highlights new scientific data on the moringa leaves containing nutrient and bioactive profiles, bioavailability, health benefits, and uses in various food items. Moringa has been extensively used as a health-promoting food additive because of its potent protection against various diseases and the widespread presence of environmental toxins. More research is needed for utilization as well as to study medicinal effects and bioaccesibility of these leaves for development of various drugs and functional foods.info:eu-repo/semantics/publishedVersio

    Environmental Influences on Growth and Reproduction of Invasive Commelina benghalensis

    Get PDF
    Commelina benghalensis (Benghal dayflower) is a noxious weed that is invading agricultural systems in the southeastern United States. We investigated the influences of nutrition, light, and photoperiod on growth and reproductive output of C. benghalensis. In the first experimental series, plants were grown under high or low soil nutrition combined with either full light or simulated shade. Lowered nutrition strongly inhibited vegetative growth and aboveground spathe production. Similar but smaller effects were exerted by a 50% reduction in light, simulating conditions within a developing canopy. In the second series of experiments, C. benghalensis plants were exposed to different photoperiod conditions that produced short- and long-day plants growing in similar photosynthetic periods. A short-day photoperiod decreased time to flowering by several days and led to a 40 to 60% reduction in vegetative growth, but reproduction above and below ground was unchanged. Collectively, the results indicate that (1) fertility management in highly weathered soils may strongly constrain competitiveness of C. benghalensis; (2) shorter photoperiods will limit vegetative competitiveness later in the growing seasons of most crops; and (3) the high degree of reproductive plasticity and output possessed by C. benghalensis will likely cause continual persistence problems in agricultural fields
    • 

    corecore