85 research outputs found
Effects of the triaxial deformation and pairing correlation on the proton emitter 145Tm
The ground-state properties of the recent reported proton emitter 145Tm have
been studied within the axially or triaxially deformed relativistic mean field
(RMF) approaches, in which the pairing correlation is taken into account by the
BCS-method with a constant pairing gap. It is found that triaxiality and
pairing correlations play important roles in reproducing the experimental one
proton separation energy. The single-particle level, the proton emission orbit,
the deformation parameters beta = 0.22 and gamma = 28.98 and the corresponding
spectroscopic factor for 145Tm in the triaxial RMF calculation are given as
well.Comment: 17 pages, 7 figures and 1 table. accepted by Physical Review
Two-proton radioactivity and three-body decay. III. Integral formulae for decay widths in a simplified semianalytical approach
Three-body decays of resonant states are studied using integral formulae for
decay widths. Theoretical approach with a simplified Hamiltonian allows
semianalytical treatment of the problem. The model is applied to decays of the
first excited state of Ne and the ground state of
Fe. The convergence of three-body hyperspherical model calculations to
the exact result for widths and energy distributions are studied. The
theoretical results for Ne and Fe decays are updated and
uncertainties of the derived values are discussed in detail. Correlations for
the decay of Ne state are also studied.Comment: 19 pages, 20 figure
Quantum time scales in alpha tunneling
The theoretical treatment of alpha decay by Gamow is revisited by
investigating the quantum time scales in tunneling. The time spent by an alpha
particle in front of the barrier and traversing it before escape is evaluated
using microscopic alpha nucleus potentials. The half-life of a nucleus is shown
to correspond to the time spent by the alpha knocking in front of the barrier.
Calculations for medium and super heavy nuclei show that from a multitude of
available tunneling time definitions, the transmission dwell time gives the
bulk of the lifetime of the decaying state, in most cases.Comment: LaTex, 1 figure, new comments and references adde
Parity violation in reaction: resonance approach
The method based on microscopic theory of nuclear reactions has been applied
for the analysis of parity violating effects in a few-body systems. Different
parity violating and parity conserving asymmetries and their dependence on
neutron energy have been estimated for reaction.
The estimated effects are in a good agreement with available exact
calculations
Role of dynamical particle-vibration coupling in reconciliation of the puzzle for spherical proton emitters
It has been observed that decay rate for proton emission from
single particle state is systematically quenched compared with the prediction
of a one dimensional potential model although the same model successfully
accounts for measured decay rates from and states. We
reconcile this discrepancy by solving coupled-channels equations, taking into
account couplings between the proton motion and vibrational excitations of a
daughter nucleus. We apply the formalism to proton emitting nuclei
Re to show that there is a certain range of parameter set of the
excitation energy and the dynamical deformation parameter for the quadrupole
phonon excitation which reproduces simultaneously the experimental decay rates
from the 2, 3 and 1 states in these nuclei.Comment: RevTex, 12 pages, 4 eps figure
Decay Rate of Triaxially-Deformed Proton Emitters
The decay rate of a triaxially-deformed proton emitter is calculated in a
particle-rotor model, which is based on a deformed Woods-Saxon potential and
includes a deformed spin-orbit interaction. The wave function of the
ground state of the deformed proton emitter Ho is obtained
in the adiabatic limit, and a Green's function technique is used to calculate
the decay rate and branching ratio to the first excited 2 state of the
daughter nucleus. Only for values of the triaxial angle
is good agreement obtained for both the total decay rate and the 2
branching ratio.Comment: 19 pages, 4 figure
Evaluation of the mean intensity of the P-odd mixing of nuclear compound states
A temperature version of the shell-optical-model approach for describing the
low-energy compound-to-compound transitions induced by external single-particle
fields is given. The approach is applied to evaluate the mean intensity of the
P-odd mixing of nuclear compound states. Unified description for the mixing and
electromagnetic transitions allows one to evaluate the mean intensity without
the use of free parameters. The valence-mechanism contribution to the mentioned
intensity is also evaluated. Calculation results are compared with the data
deduced from cross sections of relevant neutron-induced reactions.Comment: LaTeX, 10 page
Level density and thermal properties in rare earth nuclei
A convergent method to extract the nuclear level density and the gamma-ray
strength function from primary gamma-ray spectra has been established.
Thermodynamical quantities have been obtained within the microcanonical and
canonical ensemble theory. Structures in the caloric curve and in the heat
capacity curve are interpreted as fingerprints of breaking of Cooper pairs and
quenching of pairing correlations. The strength function can be described using
models and common parameterizations for the E1, M1 and pygmy resonance
strength. However, a significant decrease of the pygmy resonance strength at
finite temperatures has been observed.Comment: 15 pages including 8 figures. Proceedings article for the conference
Nuclear Structure and Related Topics, Dubna, Russia, June 6-10, 200
Renormalization of the P- and T-odd nuclear potentials by the strong interaction and enhancement of P-odd effective field
Approximate analytical formulas for the self-consistent renormalization of
P,T-odd and P-odd weak nuclear potentials by the residual nucleon-nucleon
strong interaction are derived. The contact spin-flip nucleon-nucleon
interaction reduces the constant of the P,T-odd potential 1.5 times for the
proton and 1.8 times for the neutron. Renormalization of the P-odd potential is
caused by the velocity dependent spin-flip component of the strong interaction.
In the standard variant of -exchange, the conventional strength
values lead to anomalous enhancement of the P-odd potential. Moreover, the
-meson exchange contribution seems to be large enough to generate an
instability (pole) in the nuclear response to a weak potential.Comment: 5 pages, Revtex3, no figure
Interaction of the single-particle and collective degrees of freedom in non-magic nuclei: the role of phonon tadpole terms
A method of a consistent consideration of the phonon contributions to mass
and gap operators in non-magic nuclei is developed in the so-called g^2
approximation, where g is the low-lying phonon creation amplitude. It includes
simultaneous accounting for both the usual non-local terms and the phonon
tadpole ones. The relations which allow the tadpoles to be calculated without
any new parameters are derived. As an application of the results, the role of
the phonon tadpoles in the single-particle strength distribution and in the
single-particle energies and gap values has been considered. Relation to the
problem of the surface nature of pairing is discussed.Comment: 22 pages, 7 figure
- âŠ