19,343 research outputs found
Charge Transfer Fluctuations as a QGP Signal
In this study, we analyze the recently proposed charge transfer fluctuations
within a finite pseudo-rapidity space. As the charge transfer fluctuation is a
measure of the local charge correlation length, it is capable of detecting
inhomogeneity in the hot and dense matter created by heavy ion collisions. We
predict that going from peripheral to central collisions, the charge transfer
fluctuations at midrapidity should decrease substantially while the charge
transfer fluctuations at the edges of the observation window should decrease by
a small amount. These are consequences of having a strongly inhomogeneous
matter where the QGP component is concentrated around midrapidity. We also show
how to constrain the values of the charge correlations lengths in both the
hadronic phase and the QGP phase using the charge transfer fluctuations.
Current manuscript is based on the preprints hep-ph/0503085 (to appear in
Physical Review C) and nucl-th/0506025.Comment: To appear in the proceedings of 18th International Conference on
Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2005 (QM 2005),
Budapest, Hungary, 4-9 Aug 200
Event-by-event fluctuations and the QGP
We discuss the physics underlying event-by-event fluctuations in relativistic
heavy ion collisions. We will emphasize how the fluctuations of particle ratios
can be utilized to explore the properties of the matter created in these
collisions. In particular, we will argue that the fluctutions of the ratio of
positively over negatively charged particles may serve as a unique signature
for the Quark Gluon Plasma.Comment: Proceedings Quark Matter 2001, Stony Brook, NY January 200
Formulating the Net Gain of MISO-SFN in the Presence of Self-Interferences
In this study, an analytical formula for multiple-input single-output single frequency network gain (MISO-SFNG) is investigated. To formulate the net MISO-SFNG, we derived the average signal to interference plus noise ratio (SINR) where the gain achieved by the distributed MISO diversity as a function of power imbalance is curve-fitted. Further, we analyzed the losses owing to self-interferences resulting from the delay spread and imperfect channel estimation. We verified the accuracy and effectiveness of the derived formula by comparing the measurement results with the analytical results. The derived formula helps to understand how various system factors affect the gain under a given condition. The formula can be used to evaluate the MISO-SFNG and to predict the MISO-SFN coverage in various system configurations
Friction in inflaton equations of motion
The possibility of a friction term in the equation of motion for a scalar
field is investigated in non-equilibrium field theory. The results obtained
differ greatly from existing estimates based on linear response theory, and
suggest that dissipation is not well represented by a term of the form
.Comment: 4 pages, 2 figures, RevTex4. An obscurity in the original version has
been clarifie
- …