7,123 research outputs found
Modulation of a surface plasmon-polariton resonance by sub-terahertz diffracted coherent phonons
Coherent sub-THz phonons incident on a gold grating that is deposited on a
dielectric substrate undergo diffraction and thereby induce an alteration of
the surface plasmon-polariton resonance. This results in efficient
high-frequency modulation (up to 110 GHz) of the structure's reflectivity for
visible light in the vicinity of the plasmon-polariton resonance. High
modulation efficiency is achieved by designing a periodic nanostructure which
provides both plasmon-polariton and phonon resonances. Our theoretical analysis
shows that the dynamical alteration of the plasmon-polariton resonance is
governed by modulation of the slit widths within the grating at the frequencies
of higher-order phonon resonances.Comment: 5 pages, 4 figure
Synthesis and application of cobalt and polyoxomolybdatecontaining alumina systems
The work is devoted to the synthesis and study of the activity of cobalt and polyoxomolybdate-containing alumina catalyst. The synthesized catalytic system was characterized using the following analysis methods: scanning electron microscopy, x-ray phase analysis, x-ray diffraction analysis, IR spectroscopy. It was found that the CoMo/Al[2]O[3] system is active in the hydrodesulfurization reaction of model raw materials
Plasmonic crystals for ultrafast nanophotonics: Optical switching of surface plasmon polaritons
We demonstrate that the dispersion of surface plasmon polaritons in a
periodically perforated gold film can be efficiently manipulated by femtosecond
laser pulses with the wavelengths far from the intrinsic resonances of gold.
Using a time- and frequency- resolved pump-probe technique we observe shifting
of the plasmon polariton resonances with response times from 200 to 800 fs
depending on the probe photon energy, through which we obtain comprehensive
insight into the electron dynamics in gold. We show that Wood anomalies in the
optical spectra provide pronounced resonances in differential transmission and
reflection with magnitudes up to 3% for moderate pump fluences of 0.5 mJ/cm^2.Comment: 5 pages, 4 figure
Magnetic field control of photon echo in the electron-trion system: Shuffling of coherences between optically accessible and inaccessible states
We report on magnetic field induced oscillations of the photon echo signal
from negatively charged excitons in a CdTe/(Cd,Mg)Te semiconductor quantum
well. The oscillatory signal is due to Larmor precession of the electron spin
about a transverse magnetic field and depends sensitively on the polarization
configuration of the exciting and refocusing pulses. The echo amplitude can be
fully tuned from maximum down to zero depending on the time delay between the
two pulses and the magnetic field strength. The results are explained in terms
of the optical Bloch equations accounting for the spin level structure of
electron and trion.Comment: 8 pages, 2 figure
Controlled lasing from active optomechanical resonators
Planar microcavities with distributed Bragg reflectors (DBRs) host, besides
confined optical modes, also mechanical resonances due to stop bands in the
phonon dispersion relation of the DBRs. These resonances have frequencies in
the sub-terahertz (10E10-10E11 Hz) range with quality factors exceeding 1000.
The interaction of photons and phonons in such optomechanical systems can be
drastically enhanced, opening a new route toward manipulation of light. Here we
implemented active semiconducting layers into the microcavity to obtain a
vertical-cavity surface-emitting laser (VCSEL). Thereby three resonant
excitations -photons, phonons, and electrons- can interact strongly with each
other providing control of the VCSEL laser emission: a picosecond strain pulse
injected into the VCSEL excites long-living mechanical resonances therein. As a
result, modulation of the lasing intensity at frequencies up to 40 GHz is
observed. From these findings prospective applications such as THz laser
control and stimulated phonon emission may emerge
Sub-nanosecond delay of light in (Cd,Zn)Te crystal
We study excitonic polariton relaxation and propagation in bulk CdZnTe using
time- resolved photoluminescence and time-of-flight techniques. Propagation of
picosecond optical pulses through 0.745 mm thick crystal results in time delays
up to 350 ps, depending on the photon energy. Optical pulses with 150 fs
duration become strongly stretched. The spectral dependence of group velocity
is consistent with the dispersion of the lower excitonic polariton branch. The
lifetimes of excitonic polariton in the upper and lower branches are 1.5 and 3
ns, respectively.Comment: 5 pages, 4 figure
- …