17,058 research outputs found

    Phonon emission and arrival times of electrons from a single-electron source

    Get PDF
    In recent charge-pump experiments, single electrons are injected into quantum Hall edge channels at energies significantly above the Fermi level. We consider here the relaxation of these hot edge-channel electrons through longitudinal-optical-phonon emission. Our results show that the probability for an electron in the outermost edge channel to emit one or more phonons en route to a detector some microns distant along the edge channel suffers a double-exponential suppression with increasing magnetic field. This explains recent experimental observations. We also describe how the shape of the arrival-time distribution of electrons at the detector reflects the velocities of the electronic states post phonon emission. We show how this can give rise to pronounced oscillations in the arrival-time-distribution width as a function of magnetic field or electron energy

    Field-driven topological glass transition in a model flux line lattice

    Full text link
    We show that the flux line lattice in a model layered HTSC becomes unstable above a critical magnetic field with respect to a plastic deformation via penetration of pairs of point-like disclination defects. The instability is characterized by the competition between the elastic and the pinning energies and is essentially assisted by softening of the lattice induced by a dimensional crossover of the fluctuations as field increases. We confirm through a computer simulation that this indeed may lead to a phase transition from crystalline order at low fields to a topologically disordered phase at higher fields. We propose that this mechanism provides a model of the low temperature field--driven disordering transition observed in neutron diffraction experiments on Bi2Sr2CaCu2O8 {\rm Bi_2Sr_2CaCu_2O_8\, } single crystals.Comment: 11 pages, 4 figures available upon request via snail mail from [email protected]

    Entanglement Entropy of Two Spheres

    Full text link
    We study the entanglement entropy S_{AB} of a massless free scalar field on two spheres A and B whose radii are R_1 and R_2, respectively, and the distance between the centers of them is r. The state of the massless free scalar field is the vacuum state. We obtain the result that the mutual information S_{A;B}:=S_A+S_B-S_{AB} is independent of the ultraviolet cutoff and proportional to the product of the areas of the two spheres when r>>R_1,R_2, where S_A and S_B are the entanglement entropy on the inside region of A and B, respectively. We discuss possible connections of this result with the physics of black holes.Comment: 17 pages, 9 figures; v4, added references, revised argument in section V, a typo in eq.(25) corrected, published versio

    Three-dimensional Magnetohydrodynamic Simulations of Buoyant Bubbles in Galaxy Clusters

    Full text link
    We report results of 3D MHD simulations of the dynamics of buoyant bubbles in magnetized galaxy cluster media. The simulations are three dimensional extensions of two dimensional calculations reported by Jones & De Young (2005). Initially spherical bubbles and briefly inflated spherical bubbles all with radii a few times smaller than the intracluster medium (ICM) scale height were followed as they rose through several ICM scale heights. Such bubbles quickly evolve into a toroidal form that, in the absence of magnetic influences, is stable against fragmentation in our simulations. This ring formation results from (commonly used) initial conditions that cause ICM material below the bubbles to drive upwards through the bubble, creating a vortex ring; that is, hydrostatic bubbles develop into "smoke rings", if they are initially not very much smaller or very much larger than the ICM scale height. Even modest ICM magnetic fields with beta = P_gas/P_mag ~ 10^3 can influence the dynamics of the bubbles, provided the fields are not tangled on scales comparable to or smaller than the size of the bubbles. Quasi-uniform, horizontal fields with initial beta ~ 10^2 bifurcated our bubbles before they rose more than about a scale height of the ICM, and substantially weaker fields produced clear distortions. On the other hand, tangled magnetic fields with similar, modest strengths are generally less easily amplified by the bubble motions and are thus less influential in bubble evolution. Inclusion of a comparably strong, tangled magnetic field inside the initial bubbles had little effect on our bubble evolution, since those fields were quickly diminished through expansion of the bubble and reconnection of the initial field.Comment: 20 pages, 12 figures. Accepted for publication in The Astrophysical Journa

    Equation of State in Numerical Relativistic Hydrodynamics

    Get PDF
    Relativistic temperature of gas raises the issue of the equation of state (EoS) in relativistic hydrodynamics. We study the EoS for numerical relativistic hydrodynamics, and propose a new EoS that is simple and yet approximates very closely the EoS of the single-component perfect gas in relativistic regime. We also discuss the calculation of primitive variables from conservative ones for the EoS's considered in the paper, and present the eigenstructure of relativistic hydrodynamics for a general EoS, in a way that they can be used to build numerical codes. Tests with a code based on the Total Variation Diminishing (TVD) scheme are presented to highlight the differences induced by different EoS's.Comment: To appear in the ApJS September 2006, v166n1 issue. Pdf with full resolution figures can be downloaded from http://canopus.cnu.ac.kr/ryu/ryuetal.pd

    3D Simulations of MHD Jet Propagation Through Uniform and Stratified External Environments

    Get PDF
    We present a set of high-resolution 3D MHD simulations of steady light, supersonic jets, exploring the influence of jet Mach number and the ambient medium on jet propagation and energy deposition over long distances. The results are compared to simple self-similar scaling relations for the morphological evolution of jet-driven structures and to previously published 2D simulations. For this study we simulated the propagation of light jets with internal Mach numbers 3 and 12 to lengths exceeding 100 initial jet radii in both uniform and stratified atmospheres. The propagating jets asymptotically deposit approximately half of their energy flux as thermal energy in the ambient atmosphere, almost independent of jet Mach number or the external density gradient. Nearly one-quarter of the jet total energy flux goes directly into dissipative heating of the ICM, supporting arguments for effective feedback from AGNs to cluster media. The remaining energy resides primarily in the jet and cocoon structures. Despite having different shock distributions and magnetic field features, global trends in energy flow are similar among the different models. As expected the jets advance more rapidly through stratified atmospheres than uniform environments. The asymptotic head velocity in King-type atmospheres shows little or no deceleration. This contrasts with jets in uniform media with heads that are slowed as they propagate. This suggests that the energy deposited by jets of a given length and power depends strongly on the structure of the ambient medium. While our low-Mach jets are more easily disrupted, their cocoons obey evolutionary scaling relations similar to the high-Mach jets.Comment: Accepted in ApJ, 32 pages, 18 figures, animations available from: http://www.msi.umn.edu/Projects/twj/newsite/projects/radiojets/movies
    • 

    corecore