58 research outputs found
Recommended from our members
Effect of stoichiometry on defect distribution in cubic GaN grown on GaAs by plasma-assisted MBE
High resolution electron microscopy was used to study the structure of {beta}-GaN epilayers grown on (001) GaAs substrates by plasma- assisted molecular-beam-epitaxy. The rf plasma source was used to promote chemically active nitrogen. The layer quality was shown to depend on growth conditions (Ga flux and N{sub 2} flow for fixed rf power). The best quality of GaN layers was achieved by ``stoichiometric`` growth; Ga-rich layers contain a certain amount of the wurtzite phase. GaN layers contain a high density of stacking faults which drastically decreases toward the GaN surface. Stacking faults are anisotropically distributed in the GaN layer; the majority intersect the interface along lines parallel to the ``major flat`` of the GaAs substrate. This correlates well with the observed anisotropy in the intensity distribution of x-ray reflexions. Formation of stacking faults are often associated with atomic steps at the GaN- GaAs interfaces
The influence of surface stress on the equilibrium shape of strained quantum dots
The equilibrium shapes of InAs quantum dots (i.e., dislocation-free, strained
islands with sizes >= 10,000 atoms) grown on a GaAs (001) substrate are studied
using a hybrid approach which combines density functional theory (DFT)
calculations of microscopic parameters, surface energies, and surface stresses
with elasticity theory for the long-range strain fields and strain relaxations.
In particular we report DFT calculations of the surface stresses and analyze
the influence of the strain on the surface energies of the various facets of
the quantum dot. The surface stresses have been neglected in previous studies.
Furthermore, the influence of edge energies on the island shapes is briefly
discussed. From the knowledge of the equilibrium shape of these islands, we
address the question whether experimentally observed quantum dots correspond to
thermal equilibrium structures or if they are a result of the growth kinetics.Comment: 7 pages, 8 figures, submitted to Phys. Rev. B (February 2, 1998).
Other related publications can be found at
http://www.rz-berlin.mpg.de/th/paper.htm
Tight-binding study of the influence of the strain on the electronic properties of InAs/GaAs quantum dots
We present an atomistic investigation of the influence of strain on the
electronic properties of quantum dots (QD's) within the empirical tight-binding (ETB) model with interactions up to 2nd nearest neighbors
and spin-orbit coupling. Results for the model system of capped pyramid-shaped
InAs QD's in GaAs, with supercells containing atoms are presented and
compared with previous empirical pseudopotential results. The good agreement
shows that ETB is a reliable alternative for an atomistic treatment. The strain
is incorporated through the atomistic valence force field model. The ETB
treatment allows for the effects of bond length and bond angle deviations from
the ideal InAs and GaAs zincblende structure to be selectively removed from the
electronic-structure calculation, giving quantitative information on the
importance of strain effects on the bound state energies and on the physical
origin of the spatial elongation of the wave functions. Effects of dot-dot
coupling have also been examined to determine the relative weight of both
strain field and wave function overlap.Comment: 22 pages, 7 figures, submitted to Phys. Rev. B (in press) In the
latest version, added Figs. 3 and 4, modified Fig. 5, Tables I and II,.and
added new reference
Equilibrium shapes and energies of coherent strained InP islands
The equilibrium shapes and energies of coherent strained InP islands grown on
GaP have been investigated with a hybrid approach that has been previously
applied to InAs islands on GaAs. This combines calculations of the surface
energies by density functional theory and the bulk deformation energies by
continuum elasticity theory. The calculated equilibrium shapes for different
chemical environments exhibit the {101}, {111}, {\=1\=1\=1} facets and a (001)
top surface. They compare quite well with recent atomic-force microscopy data.
Thus in the InP/GaInP-system a considerable equilibration of the individual
islands with respect to their shapes can be achieved. We discuss the
implications of our results for the Ostwald ripening of the coherent InP
islands. In addition we compare strain fields in uncapped and capped islands.Comment: 10 pages including 6 figures. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
Electrical characterization and nanoscale surface morphology of optimized Ti/Al/Ta/Au ohmic contact for AlGaN/GaN HEMT
Good ohmic contacts with low contact resistance, smooth surface morphology, and a well-defined edge profile are essential to ensure optimal device performances for the AlGaN/GaN high electron mobility transistors [HEMTs]. A tantalum [Ta] metal layer and an SiNx thin film were used for the first time as an effective diffusion barrier and encapsulation layer in the standard Ti/Al/metal/Au ohmic metallization scheme in order to obtain high quality ohmic contacts with a focus on the thickness of Ta and SiNx. It is found that the Ta thickness is the dominant factor affecting the contact resistance, while the SiNx thickness affects the surface morphology significantly. An optimized Ti/Al/Ta/Au ohmic contact including a 40-nm thick Ta barrier layer and a 50-nm thick SiNx encapsulation layer is preferred when compared with the other conventional ohmic contact stacks as it produces a low contact resistance of around 7.27 × 10-7 Ω·cm2 and an ultra-low nanoscale surface morphology with a root mean square deviation of around 10 nm. Results from the proposed study play an important role in obtaining excellent ohmic contact formation in the fabrication of AlGaN/GaN HEMTs
Multi-scale ordering of self-assembled InAs/GaAs(001) quantum dots
Ordering phenomena related to the self-assembly of InAs quantum dots (QD) grown on GaAs(001) substrates are experimentally investigated on different length scales. On the shortest length-scale studied here, we examine the QD morphology and observe two types of QD shapes, i.e., pyramids and domes. Pyramids are elongated along the [1-10] directions and are bounded by {137} facets, while domes have a multi-facetted shape. By changing the growth rates, we are able to control the size and size homogeneity of freestanding QDs. QDs grown by using low growth rate are characterized by larger sizes and a narrower size distribution. The homogeneity of buried QDs is measured by photoluminescence spectroscopy and can be improved by low temperature overgrowth. The overgrowth induces the formation of nanostructures on the surface. The fabrication of self-assembled nanoholes, which are used as a template to induce short-range positioning of QDs, is also investigated. The growth of closely spaced QDs (QD molecules) containing 2–6 QDs per QD molecule is discussed. Finally, the long-range positioning of self-assembled QDs, which can be achieved by the growth on patterned substrates, is demonstrated. Lateral QD replication observed during growth of three-dimensional QD crystals is reported
Transmission electron microscopy study of InxGa1-xAs quantum dots on a GaAs(001) substrate
A transmission electron microscopy (TEM) investigation of the morphology of InxGa1-xAs quantum dots grown on a GaAs(001) substrate has been carried out. The size and the shape of the quantum dots have been determined using bright-field images of cross-section TEM specimens and [001] on-zone bright-field images with imaging simulation from plan-view TEM specimens. The results suggest that the coherent quantum dots are lens shaped with base diameters of 25-40 nm and aspect ratios of height to diameter of 1:6-1:4. [S0163-1829(99)00920-0]
- …