5,820 research outputs found

    Charged Particle Dynamics in the Field of a Slowly Rotating Compact Star

    Full text link
    We study the dynamics of a charged particle in the field of a slowly rotating compact star in the gravitoelectromagnetic approximation to the geodesic equation . The star is assumed to be surrounded by an ideal, highly conducting plasma (taken as a magnetohydrodynamic fluid) with a stationary, axially symmetric electromagnetic field. The general relativistic Maxwell equations are solved to obtain the effects of the background spacetime on the electromagnetic field in the linearized Kerr spacetime. The equations of motion are then set up and solved numerically to incorporate the gravitational as well as the electromagnetic effects. The analysis shows that in the slow rotation approximation the frame dragging effects on the electromagnetic field are absent. However the particle is directly effected by the rotating gravitational source such that close to the star the gravitational and electromagnetic field produce contrary effects on the particle's trajectory.Comment: 10 pages, 6 figures in B & W PostScript Forma

    Fiber R and D for the CMS HCAL

    Get PDF
    This paper documents the fiber R and D for the CMS hadron barrel calorimeter (HCAL). The R and D includes measurements of fiber flexibility, splicing, mirror reflectivity, relative light yield, attenuation length, radiation effects, absolute light yield, and transverse tile uniformity. Schematics of the hardware for each measurement are shown. These studies are done for different diameters and kinds of multiclad fiber.Comment: 23 pages, 30 Figures 89 pages, 41 figures, corresponding author: H. Budd, [email protected]

    A Collection of Optimal Control Problems

    Get PDF
    In this work, a collection of elliptic and parabolic control problems with control and state constraints is described, focusing on the discretization techniques which yield to Nonlinear Programming (NLP) problems having large, sparse and structured Hessian and Jacobian matrices. The collection includes 25 elliptic and parabolic control problem, which are described in detail, reporting the sparsity pattern of the Hessian and Jacobian matrices. The figures depicting the discrete solutions of the elliptic problems are also reported. The AMPL models of the elliptic control problems can be downloaded from the prof. Mittelmann's web page http://plato.asu.edu/ftp/ampl_files/ellip_ampl/ while the ones related to the parabolic ones are downloadable from http://dm.unife.it/~bonettini/ip_pcg/controllo.ht

    Stability diagrams for Landau damping

    Get PDF
    Coherent modes which are present when there is no incoherent tune spread may be absent when such a spread exists. Such modes are``Landau damped.'' There is instead an incoherent spectrum, a continuum of an infinite number of frequencies, which will decohere (filament), thus not leading to collective instabilities. A stability diagram indicates when Landau damping will be effective. It divides the effective impedance plane, or equivalently the plane of coherent frequency in the absence of tune spread, into regions. The region which contains +i/infinity corresponds to instability. Thus, one can substitute a simpler computation (finding discrete eigenvalues) for a more complex computation (solving an eigenvalue system with both a discrete and a continuous eigenvalue spectrum). We present stability diagrams assuming a linear tune shift with amplitude, allowing tune spread in two transverse planes or in the longitudinal plane alone. When there is longitudinal tune spread, this can not be done exactly, and we describe approximations which make the computation tractable

    Doppler Effects from Bending of Light Rays in Curved Space-Times

    Get PDF
    We study Doppler effects in curved space-time, i.e. the frequency shifts induced on electromagnetic signals propagating in the gravitational field. In particular, we focus on the frequency shift due to the bending of light rays in weak gravitational fields. We consider, using the PPN formalism, the gravitational field of an axially symmetric distribution of mass. The zeroth order, i.e. the sphere, is studied then passing to the contribution of the quadrupole moment, and finally to the case of a rotating source. We give numerical estimates for situations of physical interest, and by a very preliminary analysis, we argue that analyzing the Doppler effect could lead, in principle, in the foreseeable future, to the measurement of the quadrupole moment of the giant planets of the Solar System.Comment: 16 pages, 2 EPS figures; to appear in the International Journal of Modern Physics

    A post-Keplerian parameter to test gravito-magnetic effects in binary pulsar systems

    Get PDF
    We study the pulsar timing, focusing on the time delay induced by the gravitational field of the binary systems. In particular, we study the gravito-magnetic correction to the Shapiro time delay in terms of Keplerian and post-Keplerian parameters, and we introduce a new post-Keplerian parameter which is related to the intrinsic angular momentum of the stars. Furthermore, we evaluate the magnitude of these effects for the binary pulsar systems known so far. The expected magnitude is indeed small, but the effect is important per se.Comment: 6 pages, RevTeX, 1 eps figure, accepted for publication in Physical Review D; references adde
    • …
    corecore