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Introduction
In the last years, the nonlinear programming techniques have shown to be
an effective approach to the numerical solution of optimal control problems
([15], [16], [17], [11]). Indeed, by applying a convenient discretization tech-
nique to the optimal control problem, we can obtain a finite dimensional
nonlinear programming (NLP) problem, which, under suitable assumptions,
is consistent with the continuous formulation ([15],[16]).
Furthermore, the Newton interior point algorithms developed in the last ten
years, have shown to be very reliable in finding the solution of such NLP
problems.
In this work, a collection of elliptic and parabolic control problems with
control and state constraints is described. In particular, we focus on the
discretization techniques which yield to NLP problems having large, sparse
and structured Hessian and Jacobian matrices.
The paper is organized as follows: in the section 1 the general class of the
elliptic boundary control problems is considered, with Neumann or Dirich-
let boundary condition, paying a special attention to the discretization and
optimization techniques.
Furthermore, we focus on a special case of such elliptic problem, with a
particular tracking type objective functional.
Then we describe in detail ten different boundary control problems, report-
ing the sparsity pattern of the Hessian and Jacobian matrices and the min-
imum value of the discrete cost functional for a given meshsize.
The section 2 is concerned with the distributed elliptic control problems.
Also in this case, we describe in detail the discretization and optimization
techniques and we consider the special case of a tracking type cost functional.
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Then, we describe in detail ten different distributed control problems, re-
porting the sparsity pattern of the Hessian and Jacobian matrices and the
minimum value of the discrete cost functional for a given meshsize.
In the section 3 we consider a class of parabolic control problem, and the
related dicretization and optimizazion techniques. It follows the description
of seven NLP problems arising from parabolic control problems devised from
the literature, for which we show the sparsity pattern of the Jacobian and
Hessian matrices.
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1 Elliptic boundary control problems

1.1 Statement of the problem

We consider the following elliptic boundary control problem with Neumann
boundary conditions: given a bounded domain Ω ⊂ R2 with piecewise
smooth boundary Γ, determine a boundary control function u ∈ L∞(Γ)
which minimizes the cost functional

F (y, u) =
∫

Ω
f(x, y(x))dx +

∫

Γ
g(x, y(x), u(x))dx, (1)

subject to the elliptic state equation

−∆y(x) + d(x, y(x)) = 0 for x ∈ Ω, (2)

and to the Neumann boundary conditions

∂νy(x) = b(x, y(x), u(x)) for x ∈ Γ. (3)

Here ∂ν denotes the derivative in the direction of the outward unit normal
ν of Γ. We introduce also control and state inequality constraints

C(x, y(x), u(x)) ≤ 0 x ∈ Γ,
S(x, y(x)) ≤ 0 x ∈ Ω̄.

(4)

Here Ω̄ = Ω∪Γ. The functions f : Ω×R→ R, g : Γ×R2 → R, d : Ω×R→ R,
b : Γ × R2 → R, C : Γ × R2 → R, S : Ω̄ × R → R are assumed to be C2

functions.
When the elliptic boundary problem has Dirichlet conditions, the problem
(1)–(4) becomes: determine a boundary control function u ∈ L∞(Γ) which
minimizes the cost functional

F (y, u) =
∫

Ω
f(x, y(x))dx +

∫

Γ
g(x, u(x))dx, (5)

subject to the state equation (2), the Dirichlet conditions

y(x) = b(x, u(x)) for x ∈ Γ, (6)

and the inequality constraints on control and state

C(x, u(x)) ≤ 0 x ∈ Γ,
S(x, y(x)) ≤ 0 x ∈ Ω.

(7)
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Here f : Ω × R → R, g : Γ × R → R, d : Ω × R → R, b : Γ × R → R,
C : Γ× R→ R, S : Ω× R→ R, and f, g, d, b, C, S are C2 functions.
A third version of an elliptic control problem is the following: determine a
boundary control function u ∈ L∞(Γ) which minimizes the cost functional

F (y, u) =
∫

Ω
f(x, y(x))dx +

∫

Γα

g(x, y(x), u(x))dx +
∫

Γβ

K(x, u(x))dx, (8)

where Γ = Γα∪Γβ with disjoint sets Γα, Γβ ⊂ Γ that consist of finitely many
connected components, subject to the state equation (2), to the boundary
conditions of Neumann and Dirichlet type:

∂νy(x) = b1(x, y(x), u(x)) for x ∈ Γα, (9)
y(x) = b2(x, u(x)) for x ∈ Γβ, (10)

and the inequality constraints on control and state

C(x, u(x)) ≤ 0 x ∈ Γ,
S(x, y(x)) ≤ 0 x ∈ Ω.

(11)

Here f : Ω × R → R, g : Γα × R2 → R, d : Ω × R → R, K : Γβ × R → R,
b1 : Γα × R2 → R, b2 : Γβ × R → R, C : Γ × R → R, S : Ω × R → R, and
f, g, K, d, b1, b2, C, S are C2 functions.
For the general class of elliptic control problems, the theory of necessary
conditions has not been yet fully developed. First order necessary optimality
conditions for linear elliptic equations−∆y(x)+y(x) = 0 and pure Neumann
conditions may be found in [8], [9], [10]. Problem (1)–(4) is considered as
a mathematical programming problem in Banach spaces to which the first
order Karush Kuhn Tucker conditions are applicable. For this approach, see
[15].
For Dirichlet boundary conditions, a weak formulation of first order neces-
sary conditions for linear elliptic equations may be found in [2]. Furthermore,
first order conditions are derived in [15] in a purely formal way. This form of
conditions is justified by its analogy in the first order necessary conditions
for the discretized version of elliptic problem.
Also in the case of the problem (8)–(11), first order conditions are derived
in a purely formal way in [17].

1.2 Discretization and optimization techniques

In the application of nonlinear programming techniques to optimal control,
we use a full discretization approach [7], [3], [13], where both the control and
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the state variables are discretized and the integration method is incorporated
as an explicit equality constraint at each gridpoint. This technique leads to
a large scale nonlinear programming problem (NLP) with a sparse structure
of the Jacobian of the constraints. We consider the standard situation where
the elliptic operator is the laplacian and Ω = (0, 1)× (0, 1). Given a positive
integer N , we define the stepsize h as

h =
1

N + 1

and we consider the mesh points

xij = (ih, jh), 0 ≤ i, j ≤ N + 1.

In particular, denoting the following subsets of indices as follows

I(Ω) .= {(i, j) : 1 ≤ i, j,≤ N},
I1(Γ) .= {(i, 0) : 1 ≤ i ≤ N},
I2(Γ) .= {(0, j) : 1 ≤ j ≤ N},
I3(Γ) .= {(N + 1, j) : 1 ≤ j ≤ N},
I4(Γ) .= {(i,N + 1) : 1 ≤ i ≤ N},
I(Γ) .= ∪4

k=1Ik(Γ),
I(Ω̄) .= I(Ω) ∪ I(Γ),
I(Γα) .= {(i, j) : xij ∈ Γα},
I(Γβ) = I(Γ)− I(Γα),

we have xij ∈ Ω for (i, j) ∈ I(Ω), xij ∈ Γ for (i, j) ∈ I(Γ), xij ∈ Γα for (i, j) ∈
I(Γα) and xij ∈ Γβ for (i, j) ∈ I(Γβ). As usual, we denote the approxima-
tions of the state and control variables in the mesh points as

y(xij) ≈ yij (i, j) ∈ I(Ω̄),
u(xij) ≈ uij (i, j) ∈ I(Γ).

Now, we define the vector z as the vector whose entries are the approxima-
tions of the control and state variables.
When the Neumann boundary conditions (3) hold, z is given by

z
.=

(
(yij)(i,j)∈I(Ω̄), (uij)(i,j)∈I(Γ)

)
∈ RN2+8N . (12)

The laplacian operator ∆y(x) is approximated by using the standard five
points formula for each xij , (i, j) ∈ I(Ω); so, according to the previous no-
tations, we have

−∆y(xij) ≈ 1
h2
{4yij − yi+1,j − yi−1,j − yi,j+1 − yi,j−1}. (13)
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The values of the normal derivative, needed for the Neumann boundary
conditions, are approximated in the mesh points by yν

ij/h, where

yν
ij

.=





yi0 − yi1, for j = 0 i = 1, . . . , N
y0j − y1j , for i = 0 j = 1, . . . , N
yN+1,j − yN,j , for i = N + 1 j = 1, . . . , N
yi,N+1 − yi,N , for j = N + 1 i = 1, . . . , N

(14)

Then, the discrete form of the elliptic equation and the discrete Neumann
boundary conditions lead to the equality constraints

Gh
ij(z) .= 4yij − yi+1,j − yi−1,j − yi,j+1 − yi,j−1 + h2d(xij , yij) = 0, (15)

for (i, j) ∈ I(Ω) and

Bh
ij(z) .= yν

ij − hb(xij , yij , uij) = 0 for (i, j) ∈ I(Γ). (16)

The control and state inequality constraints (4) lead to the inequality con-
straints on the variable z

Cij(xij , yij , uij) ≤ 0 (i, j) ∈ I(Γ), (17)
Sij(xij , yij) ≤ 0 (i, j) ∈ I(Ω̄). (18)

When Dirichlet boundary conditions (6) are given, they are incorporated by
the discrete relations

yij = b(xij , uij) for (i, j) ∈ I(Γ). (19)

Then, the number of the optimization variables is reduced, so that we define

z
.=

(
(yij)(i,j)∈I(Ω), (uij)(i,j)∈I(Γ)

) ∈ RN2+4N . (20)

The equality constraints are given by (15) where yi0, yiN+1, y0j , yN+1j

are replaced by b(xi0, ui0), b(xiN+1, uiN+1), b(x0j , u0j), b(xN+1j , uN+1j) re-
spectively. The control and state inequality constraints (7) give rise to the
inequality constraints

Cij(xij , uij) ≤ 0 (i, j) ∈ I(Γ),
Sij(xij , yij) ≤ 0 (i, j) ∈ I(Ω).

(21)

When Dirichlet and Neumann boundary conditions (9) and (10) are given,
these conditions are incorporated by the discrete relations

Bh
ij(z) = yν

ij − hb1(xij , yij , uij) (i, j) ∈ I(Γα), (22)
yij = b2(xij , uij) (i, j) ∈ I(Γβ). (23)
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Then the number of variables is reduced, so that we define

z
.=

(
(yij)(i,j)∈I(Ω)∪∈I(Γα), (uij)(i,j)∈I(Γ)

) ∈ RN2+τ(N). (24)

Here τ(N) is the number of variables related to the meshpoints on the edges
of Γ, where we have to compute yij (meshpoints on Γα) and uij (meshpoints
on Γ). Then, the equality constraints are given by

Gh
ij(z) = 0 (i, j) ∈ I(Ω), (25)

Bh
ij(z) = 0 (i, j) ∈ I(Γα). (26)

The control and state inequality constraints agree with those in (21).
The approximations of the functionals (1), (5) and (8) are obtained by the
rectangular rule and they are given by

F h(z) .= h2
∑

(i,j)∈I(Ω)

f(xij , yij) + h
∑

(i,j)∈I(Γ)

g(xij , yij , uij) (27)

for Neumann boundary conditions, by

F h(z) .= h2
∑

(i,j)∈I(Ω)

f(xij , yij) + h
∑

(i,j)∈I(Γ)

g(xij , uij) (28)

for Dirichlet boundary conditions, or by

F h(z) .= h2
∑

(i,j)∈I(Ω)

f(xij , yij) + h
∑

(i,j)∈I(Γα)

g(xij , yij , uij) +

+ h
∑

(i,j)∈I(Γβ)

K(xij , uij) (29)

for mixed Neumann and Dirichlet boundary conditions.
So, for every N , we obtain a NLP problem; if we state Neumann conditions,
the optimization variable z belongs to RN2+8N and the discrete boundary
conditions (16) are included in the equality constraints:

min F h(z)
Gh

ij(z) = 0 (i, j) ∈ I(Ω),
Bh

ij(z) = 0 (i, j) ∈ I(Γ),
Cij(z) ≤ 0 (i, j) ∈ I(Γ),
Sij(z) ≤ 0 (i, j) ∈ I(Ω̄).

(30)
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With Dirichlet conditions, the problem becomes

min F h(z)
Gh

ij(z) = 0 (i, j) ∈ I(Ω),
Cij(z) ≤ 0 (i, j) ∈ I(Γ),
Sij(z) ≤ 0 (i, j) ∈ I(Ω).

(31)

with z ∈ RN2+4N . With mixed boundary conditions, the NLP problem is
as follows:

min F h(z)
Gh

ij(z) = 0 (i, j) ∈ I(Ω),
Bh

ij(z) = 0 (i, j) ∈ I(Γα),
Cij(z) ≤ 0 (i, j) ∈ I(Γ),
Sij(z) ≤ 0 (i, j) ∈ I(Ω).

(32)

with z ∈ RN2+τ(N). The lagrangian functions of (30), (31) and (32) are
respectively given by

L(z, q, µ, λ) = h2
∑

(i,j)∈I(Ω) f(xij , yij) + h
∑

(i,j)∈I(Γ) g(xij , yij , uij)+
+

∑
(i,j)∈I(Ω) qijG

h
ij(z) +

∑
(i,j)∈I(Ω̄) µijS(xij , yij)+

+
∑

(i,j)∈I(Γ)[qijB
h
ij(z) + λijC(xij , yij , uij)],

(33)

L(z, q, µ, λ) = h2
∑

(i,j)∈I(Ω) f(xij , yij) + h
∑

(i,j)∈I(Γ) g(xij , uij)+
+

∑
(i,j)∈I(Ω)[qijG

h
ij(z) + µijS(xij , yij)]+

+
∑

(i,j)∈I(Γ) λijC(xij , uij),
(34)

L(z, q, µ, λ) = h2
∑

(i,j)∈I(Ω) f(xij , yij) + h
∑

(i,j)∈I(Γα) g(xij , yij , uij)+
+h

∑
(i,j)∈I(Γβ) K(xij , uij)+

+
∑

(i,j)∈I(Ω)[qijG
h
ij(z) + µijS(xij , yij)]+

+
∑

(i,j)∈I(Γα) qijB
h
ij(z) +

∑
(i,j)∈I(Γ) λijC(xij , uij),

(35)
where the Lagrange multipliers q = (qij)(i,j)∈I(Ω̄) for (33), q = (qij)(i,j)∈I(Ω)

for (34), q = (qij)(i,j)∈I(Ω)∪I(Γα) for (35) are associated with the equality
constraints and µ = (µij)(i,j)∈I(Ω̄) (or (i, j) ∈ I(Ω)) and λ = (λij)(i,j)∈I(Γ) are
related to the inequality constraints Sij(z) ≤ 0 and Cij(z) ≤ 0 respectively.
The ordering of the discrete variables yij and uij in the array z determines
the structure of the Jacobian matrix of the equality constraints and of the
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Figure 1: Ordering of the discrete variables
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Hessian matrix of the lagrangian function. The Figure 1 depicts the strategy
chosen here: the first entries of z are the yij , (i, j) ∈ I(Ω) in lexicographic
order from (i, j) = (1, 1) to (i, j) = (N, N). Then, when we have boundary
Neumann conditions, we store in the array z the boundary values yij , where
(i, j) ∈ Ik(Γ), for k = 1, 2, 3, 4. Finally, we store in the array z the discrete
control variables uij in the same order of the boundary entries yij . For the
problems (31) and (32), we use the same strategy.

1.3 Test problems: general description

In the following, we consider elliptic problems where the cost functional is
of tracking type

F (y, u) =
1
2

∫

Ω
(y(x)− yd(x))2dx +

α

2

∫

Γ
(u(x)− ud(x))2dx, (36)

with given function yd ∈ C(Ω̄), ud ∈ L∞(Γ) and a nonnegative weight α ≥ 0.
We assume that the control and state constraints are box constraints of the
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simple type

y(x) ≤ ψ(x) on Ω or Ω̄, (37)
u1(x) ≤ u(x) ≤ u2(x) on Γ, (38)

with functions ψ ∈ C(Ω̄) and u1, u2 ∈ L∞(Γ).
We assume that an optimal solution of the considered optimal control prob-
lem exists and we denote by ȳ(x) and ū(x) the optimal state function and
the optimal control function respectively. If the function b in (3) is such
that bu = 11 (or respectively b in (6) is such that bu = 1 or b1 in (9) is such
that b1u = 1), the optimal control ū(x) is completely determined.
In the case of Neumann boundary condition, if we denote by q̄(x) the adjoint
state corresponding to ȳ(x) and ū(x), we have:

• case α > 0:

ū(x) =





ud(x) + q̄(x)/α if ud(x) + q̄(x)/α ∈ (u1(x), u2(x)),
u1(x) if ud(x) + q̄(x)/α ≤ u1(x),
u2(x) if ud(x) + q̄(x)/α ≥ u2(x),

(39)

• case α = 0: we obtain an optimal control of bang–bang or singular
type:

ū(x) =





u1(x) if q̄(x) < 0,
u2(x) if q̄(x) > 0,
singular if q̄(x) = 0 on ΓS ⊂ Γ,

∫
ΓS

dx > 0.
(40)

For α = 0, the adjoint state function q̄(x) on the boundary plays the role
of a switching function. The isolated zeros of q̄(x) are switching points of a
bang–bang control.
For Dirichlet boundary conditions, we obtain the same results if we re-
place q̄(x) formally by −∂ν q̄(x). For α = 0, the outward normal derivatives
−∂ν q̄(x) plays the role of a switching function. The isolated zeros of −∂ν q̄(x)
are the switching points of a bang–bang control.
For mixed boundary conditions, if b1u = 1 and q̄(x) denotes the adjoint
state, we have:

• case α > 0: for x ∈ Γ(α), ū(x) is as in (39), while for x ∈ Γβ, ū(x) is
as in (39) with q̄(x) replaced by −∂ν q̄(x);

1Here and in the following we denote bu = ∂b/∂u
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• case α = 0: we obtain an optimal control of bang–bang or singular
type; for x ∈ Γα, ū(x) is as in (40) while for x ∈ Γβ, ū(x) is as in (40)
with q̄(x) replaced by −∂ν q̄(x); here Γ is replaced by Γα or Γβ.

Then, for α = 0, the switching function is given by q̄(x) on Γα and by
−∂ν q̄(x) on Γβ. The isolated zeros of the switching function are the switching
points of a bang–bang control.
The discrete counterpart of q̄(x) is the vector of the Lagrange multipliers
q = qij . For Dirichlet boundary conditions, ∂ν q̄(x)|Γ is replaced by qν

ij/h,
where qν

ij is given by the finite differences of (14). In this case, we assume
that qij are equal to zero on Γ (qi0 = qiN+1 = q0j = qN+1j = 0). For mixed
boundary conditions, q̄(x) is replaced by the Lagrange multipliers on Γα and
∂ν q̄(x) is replaced by qν

ij/h on Γβ with qν
ij as in (14). Furthermore, qij = 0

for (i, j) ∈ I(Γβ).
In all the described test problems, the choice of symmetric functions yd(x)
and ud(x) in the tracking functional implies that the optimal control is the
same on every edge of Γ.

1.4 Test problems: discretization technique.

When the discretization techniques described in section 1.2 are applied to a
cost functional of tracking type (36), F h(z) can be written as follows:

F h(z) =
1
2
h2

∑

(i,j)∈I(Ω)

(yij − yd(xij))2 +
α

2
h

∑

(i,j)∈I(Γ)

(uij − ud(xij))2.

The Hessian matrix H of F h(z) is a diagonal matrix, given by

H = diag(h2In1 , 0n2 , hαIn3), (41)

where n1 = N2, n2 = 0, n3 = 4N for Dirichlet boundary conditions,
n1 = N2,n2 = 4N ,n3 = 4N for Neumann boundary conditions. For mixed
boundary conditions, n1, n2, n3 depend on the choice of Γα and Γβ (see
problems 1.9 and 1.10).
Now, we determine the Jacobian matrix J of the equality constraints. For
Dirichlet boundary conditions, J is an N2 × (N2 + 4N) matrix, given by

J = [Y + D, E], (42)

where the N2 ×N2 matrix D is

D = h2diag

(
∂d(xij , yij)

∂yij

)
,
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the N2 × 4N matrix E is a sparse matrix with non null entries equal to
−∂b(xij ,uij)

∂uij
, so that

ekl =





−∂b(xi0,ui0)
∂ui0

l, k, i = 1, . . . , N

−∂b(x0j ,u0j)
∂u0j

j = 1, . . . , N k = (j − 1)N + 1, l = N + j

−∂b(xN+1j ,uN+1j)
∂uN+1j

j = 1, . . . , N k = jN, l = 2N + j

−∂b(xiN+1,uiN+1)
∂uiN+1

i = 1, . . . , N k = N2 −N + i, l = 4N −N + i

(43)
and, finally, Y is an N ×N block tridiagonal matrix with N ×N diagonal
blocks given by 



4 −1
−1 4 −1

. . . . . . . . .
−1 4 −1

−1 4




(44)

and off diagonal blocks equal to −IN .
For Neumann boundary conditions, J is an (N2 +4N)× (N2 +8N) matrix,
that can be written as follows

J =
[

Y + D Bt 04N

B T S

]
, (45)

where Y and D are N2 ×N2 matrices as in (42) and S, T are the following
4N × 4N diagonal matrices:

S = diag

(
−h

∂b(xij , yij , uij)
∂uij

)
, (i, j) ∈ I(Γ) (46)

T = diag

(
1− h

∂b(xij , yij , uij)
∂yij

)
, (i, j) ∈ I(Γ) (47)

and Bt is a sparse N2 × 4N matrix where the nonzero entries are equal to
1 and whose indices are the same of the nonzero entries of E in (42). We
point out that S = −hI4N if bu = 1.
For mixed boundary conditions, the structure of J is similar to (45), but
the sizes of B, T and S depend on the choice of Γα and Γβ (see problems
1.9 and 1.10). The hessian matrix H̄ of the lagrangian function is equal to
H in (??) for Dirichlet boundary conditions, while for Neumann conditions,
H̄ is given by

H̄ = H +




Ȳ
T̄ V̄
V̄ t S̄


 , (48)



13

where the N2 ×N2 matrix Ȳ , the 4N × 4N matrices T̄ , S̄ and V̄ are given
by

Ȳ = diag

(
h2qij

∂2d(xij , yij)
∂y2

ij

)
, (i, j) ∈ I(Ω), (49)

T̄ = diag

(
−hqij

∂2b(xij , yij , uij)
∂y2

ij

)
, (i, j) ∈ I(Γ), (50)

S̄ = diag

(
−hqij

∂2b(xij , yij , uij)
∂u2

ij

)
, (i, j) ∈ I(Γ), (51)

V̄ = diag

(
−hqij

∂2b(xij , yij , uij)
∂yijuij

)
, (i, j) ∈ I(Γ). (52)

Note that, if bu = 1, then S̄ = V̄ = 04N .
For mixed boundary conditions, the Hessian matrix H̄ of the lagrangian
function is similar to (48), but the size of T̄ , S̄, and V̄ depends on the choice
of Γα and Γβ (see problems 1.9 and 1.10).
For convenience, the numerical results reported in the following for all the
test problems are referred to the fixed stepsize h = 1/(N +1), with N = 99.
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Figure 2: Problem 1.1
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Problem 1.1 (Example 5.5 in [15])

We consider the following elliptic control problem with Neumann boundary
conditions: minimize the functional

F (y, u) =
1
2

∫

Ω
(y(x)− yd(x))2dx +

α

2

∫

Γ
(u(x)− ud(x))2dx,

subject to

on Ω : −∆y(x) = 0, yd(x) = 2− 2(x1(x1 − 1) + x2(x2 − 1)),
on Γ : ∂νy(x) = u(x)− y(x)2, 3.7 ≤ u(x) ≤ 4.5, ud(x) ≡ 0, α = 0.01
on Ω̄ : y(x) ≤ 2.071.

This problem leads to a NLP problem. The structure of the Jacobian and
Hessian matrices J and H are depicted in figure 2. The pictures, here and
in the following, are obtained with N = 5.

The Hessian matrix H of F h is a positive semidefinite matrix, because the
entries related to yij , (i, j) ∈ I(Γ) are equal to zero, while the Hessian matrix
H̄ of the lagrangian function is an indefinite diagonal matrix (see figure 3).
The minimum of the cost functional is F (ȳ, ū) = 0.55224597. The optimal
control is a continuous function and, on the bottom edge of Γ, it is such that

• ū(x) = 3.7 for x = (x1, 0), with x1 ∈ (0, .18) ∪ (.82, 1)
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Figure 3: Problem 1.1: Hessian matrix H̄
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• ū(x) = 4.5 for x = (x1, 0), with x1 ∈ (.36, .64).

Since bu = 1, on the edges of Γ, we have

ū(x) =





q̄(x) · 100 if q̄(x) · 100 ∈ (3.7, 4.5)
3.7 if q̄(x) · 100 ≤ 3.7
4.5 if q̄(x) · 100 ≥ 4.5

The active set for the state constraint y(x) ≤ 2.071 is given by the midpoints
of the edges of Γ. The dual variable for this active inequality constraint is
0.0004478692. At xi0 = (0.5, 0), we have yi0 = 2.071, qi0 = −0.04651456.

Problem 1.2 (Example 5.6 in [15])

We consider the following elliptic control problem with nonlinear Neumann
boundary conditions: minimize the functional (36) subject to

on Ω : −∆y(x) = 0, yd(x) = 2− 2(x1(x1 − 1) + x2(x2 − 1)),
on Γ : ∂νy(x) = u(x)− y(x)2, 6 ≤ u(x) ≤ 9, ud(x) ≡ 0, α = 0,
on Ω̄ : y(x) ≤ 2.835.

The obtained programming problem is an NLP problem where the Jacobian
matrix J and the Hessian matrix H have the same structure of those of the
previous problem (see figure 2), but the entries of the Hessian matrix of F h

related to the control variables uij are equal to zero. These entries are zero
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Figure 4: Problem 1.2
Hessian matrix H Hessian matrix H̄
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also in H̄. Furthermore, the nonlinearity of the Neumann conditions leads
to nonconstant diagonal entries (the ones related to the yij , (i, j) ∈ I(Γ)) in
the Hessian H̄ of the Lagrangian, which is an indefinite diagonal matrix (see
figure 4). The minimum of the cost functional is F (ȳ, ū) = 0.015078. The
optimal control is a bang–bang control, that, on the edges of Γ, is given by

ū =
{

6 if qij < 0
9 if qij > 0

where j = 1 for the bottom edge, j = N for the top edge, i = 1 for the
left edge and i = N for the right edge. The switching points on the bottom
edge of Γ are approximately (.33,0) and (.67,0). The optimal state is equal
to 2.835 at the midpoints of the edges of Γ. The dual variable for this active
inequality constraint is µij = 0.00002895.

Problem 1.3 (Example 5.7 in [15])

We consider the following elliptic control problem with Neumann boundary
conditions: minimize the functional (36) subject to

on Ω : −∆y(x)− y(x) + y(x)3 = 0, yd(x) = 2− 2(x1(x1 − 1) + x2(x2 − 1))
on Γ : ∂νy(x) = u(x), 1.8 ≤ u(x) ≤ 2.5, ud(x) ≡ 0, α = 0.01
on Ω̄ : y(x) ≤ 2.7.

By means of the discretization techniques, a NLP problem is obtained again;
the structures of the Jacobian matrix J and of the Hessian matrix H of F h
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Figure 5: Problem 1.3: Hessian matrix H̄
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are the same of those in problem 1.1 (see figure 2), but the Hessian matrix
H̄ of the lagrangian function has the form in figure 5. In this case the first
N2 entries of the diagonal depend on the values of yij , (i, j) ∈ I(Ω). The
minimum of the cost functional is F (ȳ, ū) = 0.0.264163 The optimal control
is a continuous function and, on the bottom edge of Γ, it is such that

• ū(x) = 1.8 for the points x = (x1, 0), x1 ∈ (0, .15) ∪ (.85, 1)

• ū(x) = 2.5 for the points x = (x1, 0), x1 ∈ (.29, .71).

Indeed, on the edges of Γ, we have

ū(x) =





q̄(x) · 100 if q̄(x) · 100 ∈ (1.8, 2.5)
1.8 if q̄(x) · 100 ≤ 1.8
2.5 if q̄(x) · 100 ≥ 2.5

The active set for the state constraint y(x) ≤ 2.7 is given by the points
adjacent to the corners of the domain. The dual variable for this active
inequality constraint is µij = 0.0034573.

Problem 1.4 (Example 5.8 in [15])

The cost functional and the constraints are the same of problem 1.3, but
we choose α = 0; so the Jacobian J has the same structure than problem
1.3, while the structures of the Hessian matrix H of F h and of the Hessian
matrix H̄ of the Lagrangian are given in figure 6. The minimum of the
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Figure 6: Problem 1.4: Hessian matrices H and H̄
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cost functional is F (ȳ, ū) = 0.165531. The optimal control is a bang–bang
control, and, on the bottom edge of Γ, it is given by

ū(x) =
{

1.8 if qij < 0
2.5 if qij > 0

where j = 1 for the bottom edge, j = N for the top edge, i = 1 for the
left edge and i = N for the right edge of Γ. The switching points on the
bottom edge of Γ are approximately (.21, 0) and (.79, 0). Again, the optimal
state is active at the points adjacent to the corners of the domain. The dual
variable for this active inequality constraint is µij = 0.030118.

Problem 1.5 (Example 5.1 in [15])

We consider the following elliptic control problem with Dirichlet boundary
conditions: minimize the functional (36) subject to

on Ω : −∆y(x) = 20,
y(x) ≤ 3.5,
yd(x) = 3 + 5x1(x1 − 1)x2(x2 − 1),

on Γ : y(x) = u(x), 0 ≤ u(x) ≤ 10, ud(x) ≡ 0, α = 0.01.

This control problem leads to a strictly convex quadratic programming (QP)
problem whose Jacobian and Hessian matrices J and H are structured as
shown in figure 7.
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Figure 7: Problem 1.5
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For N = 99, the minimum of the cost functional is F (ȳ, ū) = 0.196525. The
control constraints are not active while the state variable attains its upper
bound only in the center xij = (0.5, 0.5) of the unit square with dual variable
µij = 0.24602. Here qij = −0.21312, yij = 3.5, yij − yd(xij) = 0.1875.
Furthermore y(.4, .5) = 3.449163 and u(0, .5) = 1.690270.

Problem 1.6 (Example 5.2 in [15])

The cost functional and the constraints are the same of problem 1.5, except
that we choose α = 0 instead of α = 0.01. Then, the Jacobian matrix J has
the same structure as in figure 7, while the diagonal entries of the Hessian
matrix H related to the variables uij are equal to 0 (see figure 8). The
programming problem is a convex QP problem.
In this case we can expect either a bang–bang or a singular control. We
observe the following numerical results (N = 99):

• the minimum of the cost functional is F (ȳ, ū) = .096695;

• both the control and state constraint do not become active; the optimal
control is totally singular on Γ; from the numerical point of view, this
means that the multipliers qi1, qiN , q1j , qNj are equal to zero.

Problem 1.7 (Example 5.3 in [15])
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Figure 8: Problem 1.6: Hessian matrix H = H̄

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 25

We consider the following elliptic control problem with Dirichlet boundary
conditions: minimize the functional (36) subject to

on Ω : −∆y(x) = 20,
y(x) ≤ 3.2,
yd(x) = 3 + 5x1(x1 − 1)x2(x2 − 1),

on Γ : y(x) = u(x), 1.6 ≤ u(x) ≤ 2.3, ud(x) ≡ 0, α = 0.01.

The discretized problem is a strictly convex QP problem and the structures
of Jacobian and Hessian matrices are the same of problem 1.5 (see figure 7).
For N = 99, the minimum of the cost functional is F (ȳ, ū) = 0.321010. Fur-
thermore y(x) = 3.2 at the center point xij = (0.5, 0.5). The corresponding
multiplier is µij = 0.642704; the optimal control is continuous and, on the
bottom edge of Γ, it is such that

• ui0 = 2.3 for the points on the edge having the x1 coordinate in
(.002, .18) ∪ (.82, .98);

• ui0 = 1.6 for the points on the edge having the x1 coordinate in
(.23, .77);

Indeed, in view of α = h = 0.01, we have

ui,0 =





qi,1 · 104 if qi,1 · 104 ∈ (1.6, 2.3)
1.6 if qi,1 · 104 ≤ 1.6
2.3 if qi,1 · 104 ≥ 2.3
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Problem 1.8 (Example 5.4 in [15])

The data are the same of problem 1.7, but α = 0, so the Hessian matrix H
is positive semidefinite with zero entries in correspondence of the variables
uij . We have a convex QP problem. The minimum of the cost functional is
F (ȳ, ū) = 0.249178. The optimal control is a bang–bang control and

ui,0 =
{

1.6 if qi,1 < 0
2.3 if qi,1 > 0

The switching points on the bottom edge of Γ are (.2, 0) and (.8, 0). The
optimal state is active at the center point xij = (.5, .5) and the multiplier
related to this active inequality constraint is µij = 0.73378.

Problem 1.9 (Example 4.1 in [17])

We consider the following elliptic control problem with mixed Dirichlet and
Neumann boundary conditions: given Γβ = {(x1, 1) : 0 ≤ x1 ≤ 1} and
Ω0 = [0.25, 0.75]2, minimize the cost functional

F (y, u) =
1
2

∫

Ω0

(y(x)− 1)2dx +
α

2

∫

Γβ

u(x)2dx (53)

subject to

on Ω : −∆y(x) = 0,
0 ≤ y(x) ≤ 3.15 on Ω0

0 ≤ y(x) ≤ 10 on Ω− Ω0

on Γα : δνy(x) = 0 for x2 = 0, 0 ≤ x1 ≤ 1
δνy(x) = y(x)− 5 for x1 ∈ {0, 1}, 0 ≤ x2 ≤ 1

on Γβ : y(x) = u(x) 0 ≤ u(x) ≤ 10
α = 0.005

In this case, z ≡ ((yij)(i,j)∈I(Ω)∪I(Γα), (uij)(i,j)∈I(Γβ)) ∈ RN2+4N . The pro-
gramming problem is a convex QP problem. The Jacobian matrix J corre-
sponding to the equality constraints is given by

J =
[

Y U t E
U T 0N

]

where Y is a block tridiagonal N2×N2 matrix as in (42), [ U t E ] = Bt is
a N2× 4N matrix as in (45), U is a sparse 3N ×N2 matrix, T is a diagonal
3N × 3N matrix as in (47). The Hessian matrix H of F h(y, u) is a square
diagonal matrix of order N2 +4N . The Hessian matrix H̄ of the lagrangian
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Figure 9: Problem 1.9
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function is equal to H. The structures of J and H are reported in figure 9
The diagonal entries of H corresponding to the indices of xij ∈ Ω− Ω0 are
equal to zero. In the same way, the diagonal entries of H corresponding to
yij , (i, j) ∈ I(Γα) are equal to zero. The entries related to uij are equal to
hα. The minimum of the cost functional is F (ȳ, ū) = 0.26284923. The state
constraint y ≤ 3.15 for x ∈ Ω0 becomes active at the points (1

4 , 3
4) and (3

4 , 3
4)

while the state constraint y ≤ 10 in Ω − Ω0 does not become active. Since
no control is applied on the boundary Γα, we have

uiN+1 =





qiN/(αh) if qiN/(αh) ∈ (0, 10)
0 if qiN/(αh) ≤ 0
10 if qiN/(αh) ≥ 0

Problem 1.10 (Example 4.1 in [17] with α = 0)

The cost functional and the constraints are the same of the previous problem,
but in this case we choose α = 0. The optimal control is a bang–bang control,
given by

ui,N+1 =
{

0 if qiN ≤ 0
10 if qiN ≥ 0

The programming problem is a convex QP problem. The Jacobian matrix
of the equality constraints is the same of the problem 1.9 (see figure 9); the
Hessian matrix H is a diagonal matrix as that of the problem 1.9, but the
entries corresponding to uij are equal to 0 (see figure 10).
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Figure 10: Problem 1.10: Hessian matrix H = H̄
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2 Elliptic distributed control problems

2.1 Statement of the problem

We consider the following elliptic distributed control problem with mixed
Neumann and Dirichlet boundary conditions: given a bounded domain
Ω ⊂ R2 with piecewise smooth boundary Γ, where Γ = Γα ∪ Γβ with
disjoints sets Γα, Γβ ⊂ Γ that are composed of finitely many smooth and
connected components, determine a distributed control function u ∈ L∞(Ω)
that minimizes the cost functional

F (y, u) =
∫

Ω
f(x, y(x), u(x))dx +

∫

Γα

g(x, y(x))dx, (54)

subject to the elliptic state equation

−∆y(x) + d(x, y(x), u(x)) = 0 for x ∈ Ω, (55)

and to the Neumann and Dirichet boundary conditions

∂νy(x) = b1(x, y(x)) for x ∈ Γα (56)
y(x) = b2(x) for x ∈ Γβ (57)

and mixed control–state or pure state inequality constraints

C(x, y(x), u(x)) ≤ 0 x ∈ Ω
S(x, y(x)) ≤ 0 x ∈ Ω ∪ Γα.

(58)

The functions f : Ω × R2 → R, g : Γα × R → R, d : Ω × R2 → R,
b1 : Γα×R→ R, b2 : Γβ ×R→ R, C : Ω×R2 → R, and S : Ω∪Γα×R→ R
are assumed to be C1 functions. As for boundary control problem, also for
the distributed control problem, first order necessary conditions known in
literature (see [5] and [4], [1] for linear elliptic equations and [6], [14], [19]
for nonlinear elliptic equations of Lotka–Volterra type) have been formally
extended in [16]. In this way, the necessary conditions are consistent with
their counterparts in the discretized problems, given by the KKT conditions.

2.2 Discretization and optimization techniques

For the distributed control problems, we can use the same discretization and
optimization techniques described in section 1.2 for the boundary control.
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Also in this case, we consider the standard situation where the elliptic op-
erator is the laplacian and Ω = (0, 1) × (0, 1). Given a positive integer N
and h = 1

N+1 , consider the mesh points

xij = (ih, jh), 0 ≤ i, j ≤ N + 1.

Assume the same notations stated in 1.2. We define the vector z as the
vector whose entries are the approximations of the state variables yij , (i, j) ∈
I(Ω) ∪ I(Γα) and of the control variables uij , (i, j) ∈ I(Ω):

z
.=

(
(yij)(i,j)∈I(Ω)∪I(Γα), (uij)(i,j)∈I(Γ)

) ∈ R2N2+τ(N). (59)

where τ(N) is the number of index pairs of I(Γα). The remaining state
variables yij , (i, j) ∈ I(Γβ) are determined by the Dirichlet condition (57)
as

yij = b2(xij) for (i, j) ∈ I(Γβ). (60)

The derivative ∂νy(xij) in the direction of the outward normal is approxi-
mated by yν

ij/h, where yν
ij is defined in (14). Then the discrete form of the

Neumann boundary condition (56) leads to the equality constraints

Bh
ij(z) .= yν

ij − hb1(xij , yij) = 0, for (i, j) ∈ I(Γα). (61)

The application of the five points formula to the elliptic equation (55) yields
the following equality constraint for all (i, j) ∈ I(Ω)

Gh
ij(z) .= 4yij − yi+1,j − yi−1,j − yi,j+1 − yi,j−1 + h2d(xij , yij , uij) = 0. (62)

Note that the discrete Dirichlet conditions (60) are used in this equation
to substitute the variables yij for (i.j) ∈ I(Γβ). The control and state
inequality constraints (58) yield the inequality constraints

C(xij , yij , uij) ≤ 0 for (i, j) ∈ I(Ω), (63)
S(xij , yij) ≤ 0 for (i, j) ∈ I(Ω) ∪ I(Γα). (64)

The discretized form of the cost functional (54) is

F h(z) .= h2
∑

(i,j)∈I(Ω)

f(xij , yij , uij) + h
∑

(i,j)∈I(Γα)

g(xij , yij). (65)

In summary, for any N , we have the following nonlinear programming (NLP)
problem:

min F h(z)
Gh

ij(z) = 0 (i, j) ∈ I(Ω),
Bh

ij(z) = 0 (i, j) ∈ I(Γα),
C(xij , yij , uij) ≤ 0 (i, j) ∈ I(Ω),

S(xij , yij) ≤ 0 (i, j) ∈ I(Ω) ∪ I(Γα),

(66)
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with z ∈ R2N2+τ(N). The lagrangian function of the NLP problem (66) is
given by

L(z, q, λ, µ) = h2
∑

(i,j)∈I(Ω) f(xij , yij , uij) + h
∑

(i,j)∈I(Γα) g(xij , yij)+
+

∑
(i,j)∈I(Ω)[qijG

h
ij(z) + λijC(xij , yij , uij) + µijS(xij , yij)]+

+
∑

(i,j)∈I(Γα)[µijS(xij , yij) + qijB
h
ij(z)],

(67)
where the Lagrange multipliers q = (qij)(i,j)∈I(Ω)∪I(Γα), λ = (λij)(i,j)∈I(Ω)

and µ = (µij)(i,j)∈I(Ω)∪I(Γα) are associated respectively with the equality
constraints (62) and (61) and with the inequality constraints (63) and (64).
The ordering of the discrete variables yij and uij in the array z is described
in subsection 1.2 (see figure 1).

2.3 Test problems: general description

In the following, we consider elliptic problems where the cost functional is
of tracking type (except for the last problems):

F (y, u) =
1
2

∫

Ω
(y(x)− yd(x))2dx +

α

2

∫

Ω
(u(x)− ud(x))2dx, (68)

with given function yd ∈ C(Ω̄), ud ∈ L∞(Ω) and a nonnegative weight α ≥ 0.
The control and state constraints are supposed to be box constraints of the
simple type

y(x) ≤ ψ(x) on Ω, (69)
u1(x) ≤ u(x) ≤ u2(x) on Ω, (70)

with functions ψ ∈ C(Ω̄) and u1, u2 ∈ L∞(Ω). We assume that an optimal
solution ȳ(x) and ū(x) of the optimal control problems exists. If d(x, y, u)
in the state equation (55) is linear in the control variable u, the optimal
control ū(x) is completely determined. If we denote by q̄(x) the adjoint
state corresponding to ȳ(x) and ū(x), we have:

• case α ≥ 0: for x ∈ Ω

ū(x) =





ud(x) + q̄(x)/α if ud(x) + q̄(x)/α ∈ (u1(x), u2(x)),
u1(x) if ud(x) + q̄(x)/α ≤ u1(x),
u2(x) if ud(x) + q̄(x)/α ≥ u2(x),

(71)
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• case α = 0: we obtain an optimal control of bang–bang or singular
type:

ū(x) =





u1(x) if q̄(x) < 0,
u2(x) if q̄(x) > 0,
singular if q̄(x) = 0 on ΩS ⊂ Ω,

∫
ΩS

dx > 0.
(72)

The discrete counterpart of q̄(x) is the vector of the Lagrange multipliers
q = (qij), where we set qij = 0 for (i, j) ∈ I(Γβ).

2.4 Test problems: discretization techniques

When the discretization techniques described in section 2.2 are applied to a
cost functional of tracking type (68), F h(z) can be written as follows:

F h(z) =
1
2
h2

∑

(i,j)∈I(Ω)

(yij − yd(xij))2 +
α

2
h

∑

(i,j)∈I(Ω)

(uij − ud(xij))2.

The Hessian matrix H of F h(z) is a diagonal matrix, given by

H = diag(h2In1 , 0n2 , hαIn3), (73)

where n1 = N2, n2 = τ(N), n3 = N2. If Γα = ∅ and Γβ = Γ (Dirichlet
boundary conditions only), then n2 = 0. If Γα = Γ and Γβ = ∅ (Neumann
boundary conditions), then n2 = 4N .

Now, we determine the Jacobian matrix J of the equality constraints.
J is a sparse (N2 + τ(N)) × (2N2 + τ(N)) matrix, that can be written as
follows:

J =
[

Y + D Ū t Ē
Ū T 0

]
(74)

where Y is an N × N block tridiagonal matrix as in (42), D is a square
diagonal matrix of order N2 with diagonal entries of the form

(
h2 ∂d(xij , yij , uij)

∂yij

)
, (i, j) ∈ I(Ω),

Ū t is a sparse N2 × τ(N) matrix with non null entries equal to −1, Ē is
a square diagonal matrix of order N2 with diagonal entries h2 ∂d(xij ,yij ,uij)

∂uij
,

(i, j) ∈ I(Ω) and, finally, T is a square diagonal matrix of order τ(N) with
diagonal entries

(
1− h

∂b1(xij , yij)
∂yij

)
, (i, j) ∈ I(Γα).
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If Γα = ∅, Γβ = Γ, J becomes equal to the following N2 × 2N2 matrix:

J = [Y + D, Ē]. (75)

If Γα = Γ, Γβ = ∅, J is a (N2 + 4N)× (2N2 + 4N) matrix.
The Hessian matrix H̄ of the lagrangian function has the following form:

H̄ = H +




Ȳ Z̄
T̄

Z̄t S̄


 , (76)

where the N2 × N2 matrices Ȳ , Z̄, S̄ and the τ(N) × τ(N) matrix T̄ are
given by:

Ȳ = diag

(
h2qij

∂2d(xij , yij , uij)
∂y2

ij

)
, (i, j) ∈ I(Ω), (77)

S̄ = diag

(
−hqij

∂2d(xij , yij , uij)
∂u2

ij

)
, (i, j) ∈ I(Ω), (78)

Z̄ = diag

(
h2qij

∂2d(xij , yij , uij)
∂yij∂uij

)
, (i, j) ∈ I(Ω), (79)

T̄ = diag

(
−hqij

∂2b1(xij , yij)
∂y2

ij

)
, (i, j) ∈ I(Γα). (80)

If Γα = ∅, Γβ = Γ, H̄ becomes a 2N2×2N2 matrix with the following form:

H̄ = H +
(

Ȳ Z̄
Z̄t S̄

)

For convenience, the numerical results reported in the following for all the
test problems are referred to the fixed stepsize h = 1/(N + 1), with N = 99
and in some cases also with N = 199.
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Figure 11: Problem 2.1
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Problem 2.1 (Example 1 in [16])

We consider the following elliptic control problem with Dirichlet boundary
conditions (Γα = ∅): minimize the cost functional (54) subject to

on Ω : −∆y(x)− y(x) + y(x)3 = u,
y(x) ≤ 0.185, 1.5 ≤ u(x) ≤ 4.5,
yd(x) = 1 + 2(x1(x1 − 1) + x2(x2 − 1)),

on Γ : y(x) = 0, ud(x) ≡ 0, α = 0.001.

The discretization techniques lead to a NLP problem. In figure 11, the
structure of the Jacobian matrix J and that of the Hessian matrix H̄ of
the lagrangian function are reported (for N = 5). Since du(x, y, u) = 1 and
α > 0, we have that

uij =





qij · 103 if qij · 103 ∈ (1.5, 4.5)
1.5 if qij · 103 ≤ 1.5
4.5 if qij · 103 ≥ 4.5



 (81)

The state constraint is active at the center (0.5, 0.5). For N = 99, F (ȳ, ū) =
0.0621615; for N = 199, F (ȳ, ū) = 0.0644263.

Problem 2.2 (Example 2 in [16])
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Figure 12: Problem 2.2
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The data are the same of the previous problem, but in this case α = 0. The
matrix J has the same structure than in the problem 2.1 (see figure 11);
the Hessian matrix H̄ of the lagrangian function is a diagonal matrix, but
the diagonal entries of H̄ corresponding to uij , (i, j) ∈ I(Ω) are equal to
0 (see figure 12). Since α = 0, we obtain a bang–bang control, having the
following form:

ū(x) =
{

1.5 if q̄(x) < 0
4.5 if q̄(x) > 0

}

For N = 99, F (ȳ, ū) = 0.0564479; for N = 199, F (ȳ, ū) = 0.0586978.

Problem 2.3 (Example 3 in [16])

We consider the following elliptic control problem with Dirichlet boundary
conditions: minimize the functional (54) subject to

on Ω : −∆y(x)− exp(y(x)) = u,
y(x) ≤ 0.11, −5 ≤ u(x) ≤ 5,
yd(x) = sin(2πx1) sin(2πx2),

on Γ : y(x) = 0, ud(x) ≡ 0, α = 0.001.

The structure of the Jacobian matrix J and of the Hessian matrix H̄ for
the discretized NLP problem is the same of the problem 2.1 (see figure 11).
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From (71), we have

uij =





qij · 1000 if qij · 1000 ∈ (−5, 5)
−5 if qij · 1000 ≤ −5
5 if qij · 1000 ≥ 5

The state constraint is active at the points (.26, .26), (.74, .74). For N = 99,
at the point (.26, .26), we have qij = 0.00858, yij = .11, yd(xij) = 1, µij =
0.00251. Furthermore qi+1j = 0.00912, qi−1j = 0.00926, qij+1 = 0.00912,
qij−1 = 0.00926. For N = 99, F (ȳ, ū) = 0.110263; for N = 199, F (ȳ, ū) =
0.1102685.

Problem 2.4 (Example 4 in [16])

We consider the following elliptic control problem with Neumann boundary
conditions: minimize the functional (54) subject to

on Ω : −∆y(x)− exp(y(x)) = u,
y(x) ≤ 0.371, −8 ≤ u(x) ≤ 9,
yd(x) = sin(2πx1) sin(2πx2),

on Γ : ∂νy(x) + y(x) = 0, ud(x) ≡ 0, α = 0.001.

The figure 13 illustrates the structure of the matrices of the NLP problem.
In this case Γα = Γ and Γβ = ∅. Since α > 0 and du(x, y, u) = 1, we have

uij =





qij · 1000 if qij · 1000 ∈ (−8, 9)
−8 if qij · 1000 ≤ −8
9 if qij · 1000 ≥ 9

For N = 99, F (ȳ, ū) = 0.07806389; for N = 199, F (ȳ, ū) = 0.07842597.
We report also the values of y and u at the point (.5, .5): yij = −0.009152
(N = 99) and yij = −0.008243 (N = 199) while uij = −1.619699 (N = 99)
and uij = −1.588730 (N = 199).

Problem 2.5 (Example 5 in [16])

This problem has the same data as the previous one, except for the choice
α = 0. The Jacobian matrix J has the same structure of that in figure
13; the Hessian matrix H̄ of the lagrangian function has diagonal entries
corresponding to the variables uij equal to zero (see figure 14). In this case,
the optimal control is a bang–bang control having the form:

ū(x) =
{ −8 if q̄(x) < 0

9 if q̄(x) > 0

For N = 99, F (ȳ, ū) = 0.0526639.
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Figure 13: Problem 2.4
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Figure 14: Problem 2.2
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Problem 2.6 (Example 4.2 in [17])

We consider the following elliptic control problem with Neumann boundary
conditions: minimize the functional

∫

Ω
(Mu(x)2 −Ku(x)y(x))dx (82)

subject to

on Ω : −∆y(x) = y(x)(a(x)− u(x)− by(x)) y(x) ≤ ψ(x),
u1 ≤ u(x) ≤ u2,

on Γ : ∂νy(x) = 0.
(83)

where
a(x) = 7 + 4 sin(2πx1x2) (84)

b = 1, M = 1, K = 0.8, u1 = 1.7, u2 = 2, ψ(x) = 7.1 .

The discrete Neumann conditions

yν
ij = 0 (i, j) ∈ I(Γ)

suggest to reduce the number of variables yij , (i, j) ∈ I(Γ)∪I(Ω). In other
words, from the equality constraints (61), we obtain

y0j = y1j ,
yN+1j = yNj ,
yi0 = yi1,
yiN+1 = yiN .

Thus the Jacobian matrix J is an N2 × 2N2 matrix with the form

J = [Ỹ + D Ē]

where Ỹ is an N ×N block tridiagonal matrix with the off diagonal blocks
equal to −IN and the diagonal block of the form

Ỹ11 = ỸNN =




2 −1
−1 3 −1

. . . . . . . . .
−1 3 −1

−1 2




,
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Figure 15: Problem 2.6

Jacobian matrix J Hessian matrix H̄

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

nz = 130
0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 100

Ỹii =




3 −1
−1 4 −1

. . . . . . . . .
−1 4 −1

−1 3




, i = 2, . . . , N − 1.

Furthermore, the matrices D and Ē are as in (74). The matrix H has the
form (

0N2 −Kh2IN2

−Kh2IN2 2h2MIN2

)

and the matrix H̄ is equal to

H̄ = H +
(

Ȳ Z̄
Z̄t S̄

)

where Ȳ , Z̄, and S̄ are as in (??) (in this case S̄=0). The structures of
matrices J and H̄ are depicted in figure 15.
The discretized problem is again a NLP problem.
The state variable attains its upper bound at the two points (0.21, 0.99)
and (.99, .21) near the boundary. For N = 99, F (ȳ, ū) = −6.576428; for
N = 199, F (ȳ, ū) = −6.620092.
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Figure 16: Problem 2.7
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Problem 2.7 Example 4.2 in [17]

The problem has the same data of the previous problem, but in this case we
choose

b = 1, M = 0, K = 1, u1 = 2, u2 = 6, ψ(x) = 4.8 .

The structure of the Jacobian matrix J is the same of the previous problem
(see figure 15). The matrix H̄ has the diagonal entries corresponding to the
variables uij equal to zero (see figure 16).
In this case, the optimal control is a bang–bang control. For N = 99,
F (ȳ, ū) = −18.73615; for N = 199, F (ȳ, ū) = −18.86331.

Problem 2.8 (Example 6 in [17])

We consider the following elliptic control problem with Neumann boundary
conditions: minimize the functional (82) subject to

on Ω : −∆y(x) = y(x)(a(x)− u(x)− by(x)) y(x) ≤ ψ(x),
u1 ≤ u(x) ≤ u2,

on Γ : ∂νy(x) = 0 x1 = 1 0 ≤ x2 ≤ 1
x2 = 1 0 ≤ x1 ≤ 1

∂νy(x) + y(x) = 0 x1 = 0 0 ≤ x2 ≤ 1
x2 = 0 0 ≤ x1 ≤ 1
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where
a(x) = 7 + 4 sin(2πx1x2)

b = 1, M = 1, K = 0.8, u1 = 1.4, u2 = 1.6, ψ(x) = 6.09 .

In this case we can reduce the number of the discrete variables exploiting
the discrete Neumann conditions

yν
ij = 0 (i, j) ∈ I3(Γ) ∪ I4(Γ),

so we obtain
yN+1j = yNj ,
yiN+1 = yiN .

The Jacobian matrix J is given by (74) with τ(N) = 2N and has the form

J =
[

Ŷ + D Û t Ē
U I 02N,N2

]
.

The matrix Ŷ is an N2 × N2 block tridiagonal matrix where the diagonal
N ×N blocks are given by

Ŷii =




4 −1
−1 4 −1

. . . . . . . . .
−1 4 −1

−1 3




, i = 1, . . . , N − 1.

ŶNN =




3 −1
−1 3 −1

. . . . . . . . .
−1 3 −1

−1 2




and the off diagonal blocks are equal to −IN . The matrix U is a sparse
2N ×N2 matrix with nonzero entries with column indices corresponding to
the variables yi1 and y1j for i, j = 1, . . . N . The diagonal matrices D and Ē
are as in (74). The structure of J for N = 5 is depicted in figure 17.
The Hessian matrix H of F h(z) has the form

H =




0N2 0N2,2N −Kh2IN2

0N2,2N 02N 0N2,2N

−Kh2IN2 0N2,2N 2h2MIN2


 ,
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Figure 17: Problem 2.8

Jacobian matrix J Hessian matrix H

0 10 20 30 40 50 60

0

5

10

15

20

25

30

35

nz = 160
0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 75

as shown in figure 17, while the Hessian matrix of the lagrangian function
is given by

H̄ = H +




Ȳ Z̄
T̄

Z̄t S̄




(see figure 18) where Ȳ , Z̄, S̄ and T̄ are diagonal matrices as in (76). In
this case S̄ and T̄ are equal to zero. For N = 99, F (ȳ, ū) = −4.27569; for
N = 199, F (ȳ, ū) = −4.31709.
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Figure 18: Problem 2.8
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3 Parabolic control problems

3.1 Statement of the problem

We consider the following optimal control problem: determine a piecewise
continuous control function u(x, t), (x, t) ∈ [0, 1]× [0, 1] which minimizes the
cost functional

F (u) =
∫ 1

0

∫ 1

0
(y2(x, t) + αu2(x, t))dxdt +

∫ 1

0
y2(x, 1)dx (85)

subject to the diffusion–convection equation

yt = ayxx + byx − cy + d + σ̃u, (x, t) ∈ (0, 1)× [0, 1], (86)

the initial condition

y(x, 0) = y0(x), x ∈ [0, 1], (87)

the boundary conditions

y(0, t) = g0(t), y(1, t) = g1(t), t ∈ [0, 1] (88)

and state constraint and/or control constraints

ymin ≤ y(x, t) ≤ ymax (x, t) ∈ [0, 1]× [0, 1] (89)
umin ≤ u(x, t) ≤ umax (x, t) ∈ [0, 1]× [0, 1]. (90)

Here y(x, t) is a function of the arguments x (space) and t (time) which
characterizes the state of the controlled system and u(x, t) is a function
which characterizes the control actions of the system. The parameters a, b,
c, are known and constant with a > 0, c ≥ 0; σ̃ is a constant or a given
function of the argument y. The function d is the source term and it may
be a function of y, while y0(x), g0(t), g1(t) are given functions, satisfying
the compatibility conditions

y0(0) = g0(0), y0(1) = g1(0). (91)

3.2 Discretization techniques

The technique employed to obtain an NLP problem from the optimal control
problem (85)–(90) is described in [11]. For sake of completeness, we report
this description, specifying the structure of the involved matrices when d and
σ̃ depend on the argument y. To obtain finite difference approximations of
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the diffusion–convection problem (86), (87), (88), we discretize first only
the spatial variable x, leaving the time variable t continuous. The interval
0 ≤ x ≤ 1 is subdivided into N + 1 subintervals of size h, so that h = 1

N+1 .
We denote by xi the point ih, i = 0, . . . , N + 1. If we use the following
central difference formulas

yxx =
y(xi−1, t)− 2y(xi, t) + y(xi+1)

h2
+ o(h2) (92)

yx =
y(xi+1, t)− y(xi−1)

2h
+ o(h2) (93)

to discretize the equation (86) at each inner mesh point xi, i = 0, . . . , N , we
obtain a system of N first order ordinary equations of the form

y′(t) = Ay(t) + s(y, y(t)) + B(y(t))u(t), (94)

where y(t) is the approximation of the vector solution (y(x1, t), . . . , y(xN , t))t;
A and B are the following N ×N matrices:

A =




−( 2a
h2 + c) a

h2 + b
2h

a
h2 − b

2h −( 2a
h2 + c) a

h2 + b
2h

. . .
a
h2 − b

2h −( 2a
h2 + c)


 (95)

B(y(x)) = diag(σ̃(y(x1, t)), . . . , σ̃(y(xN , t))). (96)

Furthermore, we have

u(t) = (u(x1, t), . . . , u(xN , t))t (97)

s(t, y(t)) =




d(x1, t, y(x1, t)) + ( a
h2 − b

2h)g0(t)
d(x2, t, y(x2, t))

. . .
d(xN−1, t, y(xN−1, t))

d(xN , t, y(xN , t)) + ( a2

h2 + b
2h)g1(t)t




. (98)

The vector solution y(t) of the differential system (94) is subject to the
initial vector condition

y(0) = (y0(x1), . . . , y0(xN )). (99)

For each h such that
h <

2a

|b| (100)
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the tridiagonal matrix A is irreducibly diagonnaly dominant. Thus, the
matrix A is nonsingular. Since the diagonal entries of A are negative, the
eigenvalues λi of A belong to the negative part of the complex plane, i.e.
Re(λi) < 0, i = 1, 2, . . . , N (see [20], p. 23). Then, if the matrix B has con-
stant diagonal entries and the source term d is independent from y(x, t), so
that s(t, y(t)) ≡ s(t), then the continuous dynamic system (94) is asymptot-
ically stable (see [18], p. 65). Suppose that the fixed-time process (94)–(99)
is of M steps duration. Then, the interval [0, 1] is divided into M subin-
tervals, each of size k, so that Mk = 1; we assume that the controls are
piecewise constant, u(t) = uj for t ∈ (tj , tj+1], j = 0, 1, . . . , M − 1. Using
the backward difference implicit method for solving the differential system
(94), we obtain, at the time t = (j−1)k for any time level j = 0, 1, . . . , M−1,
the following difference equations:

yj+1 − yj

k
= Ayj+1 + sj+1(yj+1) + B(yj)uj j = 0, 1, . . . ,M − 1 (101)

or

(I−kA)yj+1 = −yj +ksj+1(yj+1)+kB(yj)uj j = 0, 1, . . . , M−1 (102)

where B(yj) is the N ×N diagonal matrix

B(yj) = diag(σ̃(x1j), . . . , σ̃(xNj)), j = 0, 1, . . . , M − 1 (103)

with y0 = y(0).
Any scalar equation of the system (102) has the form

−k
(

a
h2 − b

2h

)
yi−1j+1 +

(
1 + k( 2a

h2 + c)
)
yij+1 − k

(
a
h2 − b

2h

)
yi+1j+1 =

= yij + ksij(yij) + kσ̃(yij)uij

(104)
for i = 1, . . . , N , j = 0, 1, . . . , M − 1.
Since the real parts of the eigenvalues of A are negative (Re(λi) < 0), the
eigenvalues of the matrix (I − kA) have the real parts strictly positive and
greater than 1 (i.e.1Re(λi) > 1) for any k > 0, so the spectral radius of
(I−kA) is greater than 1. Then the matrix (I−kA) is nonsingular and the
spectral radius of the inverse (I − kA)−1 is strictly less then 1. This means
that, if the source term is independent of y so that

sj+1 =




d(x1, tj+1) + ( a
h2 − b

2h)g0(tj+1)
d(x2, tj+1)

. . .
d(xN−1, tj+1)

d(xN , tj+1)) + ( a2

h2 + b
2h)g1(tj+1)




,
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and the matrix B has constant diagonal entries equal to σ̃, then the discrete
dynamic system (102) is asymptotically stable for any k > 0 (see [18], p.71).
If we denote by z the vector whose entries are the approximations yij+1 and
uij of the control and state at any point xi, i = 1, . . . , N and any level time
tj , j = 1, . . . , M − 1, we have

z = (yt
1, y

t
2, . . . , y

t
M , ut

0, . . . , u
t
M−1)

t

= (y11, . . . , yN1, y12, . . . , yN2, . . . , y1M , . . . , yNM , u10, . . . , uN0, . . . , u1M−1, . . . , uN,M−1)t

(105)
where z ∈ R2MN . Furthermore,

s = (s1(y1), . . . , sM (yM ))

and the equation (102) can be written in the form

G(z) = 0

where G(z) ∈ RMN . The analogous discrete form for the state constraints
(89) and for the control constraints (90) is respectively

ymine ≤ [IMN 0MN ]z ≤ ymaxe (106)
umine ≤ [0MN IMN ]z ≤ umaxe (107)

where e = (1, . . . , 1)t ∈ RMN .
To discretize the cost functional (85), we use the rectangular rule to integrate
with respect to the space variable and we obtain

F (u(t)) = h

∫ 1

0

N∑

i=0

(y2(xi, t) + αu2(xi, t))dt + h
N∑

i=0

y2(xi, 1). (108)

Then, using again the rectangular rule to integrate with respect to the time
variable and assuming u(0, t) ≡ 0, t ∈ [0, 1], we have

F̃ = hk
M−1∑

i=0

N∑

i=0

y2
ij + h

N∑

i=0

y2
iM + αhk

M−1∑

i=0

N∑

i=0

u2
ij + γ. (109)

where γ = hk
∑N

i=0 y0(xi)+hk
∑M−1

i=0 g2
0(tj)+hg2

0(tM ). Then, we define the
2MN × 2MN matrix H as follows:

H =
(

Hy 0
0 Hu

)
(110)
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where

Hy =




2hkIN

2hkIN

. . .
2hkIN

2hIN




(111)

and
Hu = 2αhkIMN . (112)

The minimization of the functional F̃ is equivalent to minimize the quadratic
form

F̄ (z) =
1
2
ztHz. (113)

So, for any N and M we have to solve the following NLP problem:

min F̄ (z)
s.t.

G(z) = 0
ymine ≤ (IMN , 0MNz ≤ ymaxe
umine ≤ (0MN , IMNz ≤ umaxe.

(114)

The Lagrangian function of the problem (114) has the form

L(z, q, µ, λ) = F̄ (z)−G(z)tq−
(

z −
(

ymine
ymaxe

))t

µ−
((

ymine
ymaxe

)
− z

)t

λ

(115)
where q ∈ RMN , µ, λ ∈ R2MN are the Lagrange multipliers corresponding
to the equality constraints and to the lower and upper bounds respectively.
The Jacobian matrix J of the equality constraints is an MN × 2MN sparse
matrix of the form

J = [R D] (116)

with

R =




Ω− E1

−IN − C1 Ω−E2
. . . . . .

−IN − CM−1 Ω−EM


 (117)

Ω = (I − kA) (118)

Ej = k diag
(

∂d(x1, tj , y1j)
∂y1j

, · · · ,
∂d(xN , tj , yNj)

∂yNj

)
j = 1, ...M (119)
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Cj = k diag
(

∂σ̃(y1j)
∂y1j

u1j , · · · ,
∂σ̃(yNj)

∂yNj
unj

)
j = 1, ...M − 1 (120)

D =




D0

. . .
DM−1


 Dj = −kB(yj), j = 0, ..., M − 1. (121)

If the source term d and the function σ̃ are independent of y(x, t), then the
Jacobian matrix J of (116) becomes

J =




Ω −σ̃kIN

−IN
. . . . . .
−IN Ω −σ̃kIN


 (122)

and the equality constraints become

G(z) = Jz − s̃ = 0, (123)

where

s̃ = ks +
(

Ωy0

0(M−1)N

)
.

The Hessian matrix H̄ of the Lagrangian function (115) is the following
2MN × 2MN matrix

H̄ = H +




L1 + T1

. . .
LM−1 + TM−1

LM

s

st 0MN




(124)

where

Lj = k diag

(
q1j

∂2d(x1, tj , y1j)
∂y2

1j

, ..., qNj
∂2d(xN , tj , yNj)

∂y2
Nj

)
j = 1, ..., M

(125)

Tj = k diag

(
q1j+1

∂2σ̃(y1j)
∂y2

1j

u1j , ..., qNj+1
∂2σ̃(yNj)

∂y2
Nj

uNj

)
j = 1, ..., M − 1

(126)

S =




0N S1

. . . . . .
0N SM−1

0N


 (127)
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where

Sj = k diag
(

q1j+1
∂σ̃(y1j)

∂y1j
, ..., qNj+1

∂σ̃(yNj)
∂yNj

)
j = 1, ..., M − 1. (128)

If the source term and the function σ̃ are independent of y(x, t), the Hessian
matrix H̄ is equal to H.

Problem 3.1

We consider the following optimal control problem: minimize the functional
(85) subject to

yt = ayxx + byx − cy + d + σ̃u (x, t) ∈ (0, 1)× (0, 1]
y(x, 0) = y0(x) = x cos(π

2 x) x ∈ [0, 1]
y(0, t) = 0 t ∈ [0, 1]
y(1, t) = 0 t ∈ [0, 1]

0 ≤ y(x, t) ≤ 2 (x, t) ∈ (0, 1)× (0, 1]

where d(x, t) = e−t
(
π(a + bx

2 ) sin(π
2 x)− b cos(π

2 x)
)
, α = 0.5, σ̃ = aπ2

4 +c−1,
a = 1, b = 70, c = 12.
In this case σ̃ is constant and d(x, t) is independent of y(x, y). Then, the
condition (100) requires that N > 34.
The discretization of the problem leads to a strictly convex quadratic pro-
gramming problem, where the matrix J is given by (122). The sparsity pat-
tern of the Hessian matrix H and of the Jacobian matrix J , for M = N = 5,
are reported in figure 19 .

Problem 3.2

The data of this problem are the same of problem 3.1, unless for σ̃ = 1 −
aπ
4 − c. Also in this case, the discretized problem is a strictly convex QP

problem.

Problem 3.3

We consider the following optimal control problem: minimize the functional
(85) subject to

yt = ayxx + byx − cy + d + σ̃u (x, t) ∈ (0, 1)× (0, 1]
y(x, 0) = y0(x) = x cos(π

2 x) x ∈ [0, 1]
y(0, t) = 0 t ∈ [0, 1]
y(1, t) = 0 t ∈ [0, 1]

y(x, t) ≤ 2 (x, t) ∈ (0, 1)× (0, 1]
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Figure 19: Matrix patterns for the problem 3.1
Hessian matrix H Jacobian matrix J
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where

d(x, t) = e−t

(
cos(

π

2
x)(−b + x(−2 +

aM2

4
+ c))

)
+sin(

π

2
x)

(
(a +

bx

2
)π

)
+δey,

and α = 0.5, σ̃ = 1, a = 1, b = 70, c = 12, δ = 1.
The discretization of the problem leads to an NLP problem where H = H̄.
The sparsity pattern of the Hessian matrix H and of the Jacobian matrix J
are the same than those of Problem 3.1.

Problem 3.4

We consider the following optimal control problem: minimize the functional
(85) subject to

yt = ayxx + byx − cy + d + σ̃u (x, t) ∈ (0, 1)× (0, 1]
y(x, 0) = y0(x) = x cos(π

2 x) x ∈ [0, 1]
y(0, t) ≤ 2 t ∈ [0, 1]
u(1, t) ≤ 2 t ∈ [0, 1]

where

d(x, t) = e−t
(
cos(πx/2)

(−b + x(aπ2/4 + c− 1− δe−tx cos(πx/2))
))

+
+π(a + bx/2) sin(πx/2),

and α = 0.5, σ̃ = δy, a = 1, b = 70, c = 12, δ = 1
The discretization of the problem leads to an NLP problem whose Hessian
and Jacobian matrices H̄ and J have the structure depicted in figure 19.
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Problem 3.5

We consider the following optimal control problem: minimize the functional
(85) subject to

yt = ayxx + byx − cy + d + σ̃u (x, t) ∈ (0, 1)× (0, 1]
y(x, 0) = y0(x) = x cos(π

2 x) x ∈ [0, 1]
y(0, t) = 0 t ∈ [0, 1]
y(1, t) = 0 t ∈ [0, 1]
y(t, x) ≤ 2 (x, t) ∈ (0, 1)× (0, 1]

where

d(x, t, y) = e−t
(
cos(πx/2)

(−2x + cx− b + δe−tx2 cos(πx/2) + aπ2/4)
))

+
+x(a + bx/2) sin(πx/2)− δy2,

and α = 0.5, σ̃ = 1, a = 1, b = 70, c = 12, δ = 1.
The discretization of the problem leads to an NLP problem whose Hessian
and Jacobian matrices H̄ and J have the structure depicted in Figure 19.

Problem 3.6

We consider the following optimal control problem: minimize the functional
∫ 1

0

∫ 1

0
(y(x, t).ȳ(x, t))2 dxdt +

∫ 1

0
(y(x, 1)− ȳ(x, 1))2 dx (129)

subject to

yt = ayxx + byx − cy + d + σ̃u (x, t) ∈ (0, 1)× (0, 1]
y(x, 0) = y0(x) = x cos(π

2 x) + 4 x ∈ [0, 1]
y(0, t) = 4 t ∈ [0, 1]
y(1, t) = 4 t ∈ [0, 1]
y(t, x) ≥ 3 (x, t) ∈ (0, 1)× (0, 1]

where

d(x, t) = e−t (π(a + bx/2) sin(πx/2)− b cos(πx/2)) + 4c

and σ̃ = 1− aπ2/4, a = 1, b = 70, c = 12, ȳ(x, t) = xe−t cos(πx/2) + 4.
The discretization of the functional (129) has the form

F̃ (z) = hk
M−1∑

j=1

N∑

i=1

(yij − ȳ(xi, tj))
2 + h

N∑

i=1

(yiM − ȳ(xi, tM ))2
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Figure 20: Matrix patterns for the problem 3.6
Hessian matrix H Jacobian matrix J
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The Hessian matrix H of the function F̃ (z) has the form

H =
(

Hy 0
0 0

)

where Hy is given in (111). The discretization of this optimal control prob-
lem leads to a convex QP problem, where the Jacobian matrix J has the
form (122) depicted in the figure 20 and H = H̄.

Problem 3.7

We consider the following optimal control problem: minimize the cost func-
tional

F (y, u) =
∫ tf

0

∫ xf

0
D1(x) (y(x, t)− yS(x, t))2 dxdt+α̃

∫ tf

0

∫ xf

0
D2(x)u2(x, t)dxdt,

(130)
subject to

yt = −V yx −K3y −K1L + K3yS + u, (x, t) ∈ (0, xf ]× (0, tf ] (131)
y(x, 0) = y0(x) x ∈ [0, xf ] (132)
y(0, t) = ρ0(t) t ∈ [0, tf ] (133)
y(x, t) ≤ ymax(x) (x, t) ∈ [0, xf ]× [0, tf ] (134)
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This is a special case of a water quality problem, described in [12], where
y(x, t) is the dissolved oxygen concentration in a river of length xf , u(x, t)
is the rate of an artificial aeration mechanism and tf is the time duration
of the control. The functions D1(x) and D2(x) are two weighting functions,
and they are non negative and positive respectively, while α̃ is a positive
scalar parameter. For the meaning of the other parameter see [12]. The
equation (131) is related to a special case of a stream, assuming no tidal
action and the cross sectional area constant.
Here, we consider

L(x, t) =
{

J1
V e−(K1/V )x x < V t
0 x ≥ V t

and we set the data as follows: xf = 5 miles, tf = 4 days, V (x) ≡ V̄ ≡
V = 1 mile/day, J1 = 15, K1 = 0.16 day−1, K3 = 0.66 day−1, y0(x) = 6
mg/l, yS(x) = 6 mg/l, ρ0 = 6 mg/l, ymax(x) ≡ ymax = 7 mg/l, D1(x) = 1,
D2 = 1, α̃ ∈ [0.1, 10].
The discretization technique used employed for this distributed control prob-
lem is described in [11] and leads to a QP problem,
In the following, we describe the main aspects of this approach. Setting
h = xf/N and xi = xf + ih, i = 0, 1, ..., N , the space derivative yx in (131)
is replaced by the difference formula

y(xi, t)− y(xi−1, t)
h

(135)

By substituting (135) in (131) for each i = 1, ..., N , we obtain a system of
N first order differential equation of the following form

dy(t)
dt

= Ay(t) + s(t) + u(t), (136)

where

y(t) = (y(x1, t), ..., y(xN , t))t

u(t) = (y(u1, t), ..., y(uN , t))t

s(t) =
(

V1
h ρ0(t) + K3yS(x1, t)−K1L(x1, t),K3yS(x2, t)−K1L(x2, t), ...,

K3yS(xN , t)−K1L(xN , t))t

and the N ×N matrix A has the form

A =




− (
V1
h + K3

)
V2
h − (

V2
h + K3

)
. . . . . .

VN
h −

(
VN
h + K3

)




(137)
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with Vi = V (xi), i = 1, ..., N .
The vector solution y(t) of the differential system (136) is subject to the
initial condition

y(0) = y0 = (y0(x1), ..., y0(xN ))t. (138)

Since the matrix A is a strictly diagonal dominant matrix, it is non singular,
and its eigenvalues are λi = −(Vi/h + K3) < 0, i = 1, ..., N . The continuous
dynamic system (136) is asymptotically stable [18].
Suppose that the fixed-time process (136)–(138) is of M step duration. Then
the interval [0, tf ] is divided into M subintervals of width k, so that kM = tf ;
we assume u(t) = uj for t ∈ [tj , tj+1), j = 0, 1, ..., M − 1.
Using the forward difference method for solving the system (136), we obtain
the following difference equations

yj+1 − yj

k
= Ayj + s(tj) + uj

for any time tj+1 = (j + 1)k, j = 0, 1, ..., M − 1, that can be written also as

yj+1 = (I + kA)yj + ks(tj) + kuj , j = 0, ..., M − 1, (139)

with y0 = y(0). Here yj = y(tj) = (y(x1, tj), ..., y(xN , tj))T = (y1j , ..., yNj)T

and uj = u(tj) = (u(x1, tj), ..., u(xN , tj))T = (u1j , ..., uNj)T .
The eigenvalue of the matrix Ω = I + kA are 1− k

(
vi
h + k3

)
, i = 1, ..., N .

Then, for

k <
2(

v̄
h + k3

) (140)

with v̄ = maxi=1,...,N (vi), the discrete dynamic system (139) is asymptoti-
cally stable [18]. If we set z = (yT

1 , ..., yT
M , uT

0 , ..., uM−1)T ∈ R2MN ,

s̃ =




ks(t0) + Ωy0

ks(ti)
...

ks(tM−1)




and

J =




IN −kIN

−Ω
−Ω IN −kIN




then the equation (139) can be written in the form

Jz − s̃ = 0 (141)
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and the discrete form of the state constraint (134) is

[IMN 0]z ≤ ymaxe (142)

where, in this case, ymax is a constant parameter.
The discretization of the functional (130) is obtained by using the trape-
zoidal rule to integrate with respect to the space variable and then the
rectangular rule to integrate with respect to the time variable.
The final form of the discretized functional that we have to minimize is

F̄ (z) =
1
2
zT Hz − rT z (143)

where H is a 2NM × 2NM matrix with the form

H =
(

Hy

Hu

)
(144)

where Hy = diag(hkD1, ...hkD1, 0N ), Hu = α̃kdiag(D2, D2, ..., D2), D1 =
diag(2D1(x1), ..., 2D1(xN−1), D1(xN )), D2 = diag(D2(x1), 2D2(x2), ..., 2D2(xN−1), D2(xN ))

and

r = hk




D1ys1

D1ys2
...

D1ysM−1

0N
...

0N




(145)

with ysj = (ys(x1, tj), ..., ys(xN , tj)), j = 1, ..., M−1. Then, an approximate
solution of the original problem can be obtained by solving the following
convex QP problem

min F̄ (z)
s.t. Jz = s̃

(IMN 0)z ≤ ymaxe
(146)

Since the QP problem is feasible (see [11]), there exists a unique optimal
solution of the control problem [7]. In figure 21 the patterns of the matrices
H and J are reported for N = M = 5. Finally, we observe that for the value
assigned to the data in this case, the condition (140) is always satisfied.
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Figure 21: Matrix pattern for the problem 3.7
Hessian matrix H Jacobian matrix J
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