117 research outputs found

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Collaborative community based care for people and their families living with schizophrenia in India: protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: There is a large treatment gap with few community services for people with schizophrenia in low income countries largely due to the shortage of specialist mental healthcare human resources. Community based rehabilitation (CBR), involving lay health workers, has been shown to be feasible, acceptable and more effective than routine care for people with schizophrenia in observational studies. The aim of this study is to evaluate whether a lay health worker led, Collaborative Community Based Care (CCBC) intervention, combined with usual Facility Based Care (FBC), is superior to FBC alone in improving outcomes for people with schizophrenia and their caregivers in India. METHODS/DESIGN: This trial is a multi-site, parallel group randomised controlled trial design in India.The trial will be conducted concurrently at three sites in India where persons with schizophrenia will be screened for eligibility and recruited after providing informed consent. Trial participants will be randomly allocated in a 2:1 ratio to the CCBC+FBC and FBC arms respectively using an allocation sequence pre-prepared through the use of permuted blocks, stratified within site. The structured CCBC intervention will be delivered by trained lay community health workers (CHWs) working together with the treating Psychiatrist. We aim to recruit 282 persons with schizophrenia. The primary outcomes are reduction in severity of symptoms of schizophrenia and disability at 12 months. The study will be conducted according to good ethical practice, data analysis and reporting guidelines. DISCUSSION: If the additional CCBC intervention delivered by front line CHWs is demonstrated to be effective and cost-effective in comparison to usually available care, this intervention can be scaled up to expand coverage and improve outcomes for persons with schizophrenia and their caregivers in low income countries. TRIAL REGISTRATION: The trial is registered with the International Society for the Registration of Clinical Trials and the allocated unique ID number is ISRCTN 56877013

    Expression of Y-box-binding protein dbpC/contrin, a potentially new cancer/testis antigen

    Get PDF
    Y-box-binding proteins are members of the human cold-shock domain protein superfamily, which includes dbpA, dbpB/YB-1, and dbpC/contrin. dbpC/contrin is a germ cell-specific Y-box-binding protein and is suggested to function as a nuclear transcription factor and RNA-binding protein in the cytoplasm. Whereas ubiquitous dbpB/YB-1 expression has been well studied in various types of human carcinomas as a prognostic or predictive marker, the dbpC/contrin expression in human tumour cells has not been reported. In this report, we provide the first evidence showing that dbpC was highly expressed in human testicular seminoma and ovarian dysgerminomas, and in carcinomas in other tissues and that its expression in normal tissues is nearly restricted to germ cells and placental trophoblasts. These results indicate that dbpC/contrin would be a potentially novel cancer/testis antigen

    CD26/dipeptidyl peptidase IV (CD26/DPPIV) is highly expressed in peripheral blood of HIV-1 exposed uninfected Female sex workers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Design of effective vaccines against the human immunodeficiency virus (HIV-1) continues to present formidable challenges. However, individuals who are exposed HIV-1 but do not get infected may reveal correlates of protection that may inform on effective vaccine design. A preliminary gene expression analysis of HIV resistant female sex workers (HIV-R) suggested a high expression CD26/DPPIV gene. Previous studies have indicated an anti-HIV effect of high CD26/DPPIV expressing cells in vitro. Similarly, high CD26/DPPIV protein levels in vivo have been shown to be a risk factor for type 2 diabetes. We carried out a study to confirm if the high CD26/DPPIV gene expression among the HIV-R were concordant with high blood protein levels and its correlation with clinical type 2 diabetes and other perturbations in the insulin signaling pathway.</p> <p>Results</p> <p>A quantitative CD26/DPPIV plasma analysis from 100 HIV-R, 100 HIV infected (HIV +) and 100 HIV negative controls (HIV Neg) showed a significantly elevated CD26/DPPIV concentration among the HIV-R group (mean 1315 ng/ml) than the HIV Neg (910 ng/ml) and HIV + (870 ng/ml, p < 0.001). Similarly a FACs analysis of cell associated DPPIV (CD26) revealed a higher CD26/DPPIV expression on CD4+ T-cells derived from HIV-R than from the HIV+ (90.30% vs 80.90 p = 0.002) and HIV Neg controls (90.30% vs 82.30 p < 0.001) respectively. A further comparison of the mean fluorescent intensity (MFI) of CD26/DPPIV expression showed a higher DPP4 MFI on HIV-R CD4+ T cells (median 118 vs 91 for HIV-Neg, p = 0.0003). An evaluation for hyperglycemia, did not confirm Type 2 diabetes but an impaired fasting glucose condition (5.775 mmol/L). A follow-up quantitative PCR analysis of the insulin signaling pathway genes showed a down expression of NFκB, a central mediator of the immune response and activator of HIV-1 transcription.</p> <p>Conclusion</p> <p>HIV resistant sex workers have a high expression of CD26/DPPIV in tandem with lowered immune activation markers. This may suggest a novel role for CD26/DPPIV in protection against HIV infection in vivo.</p

    NOMA: A Preventable “Scourge” of African Children

    Get PDF
    Noma is a serious orofacial gangrene originating intraorally in the gingival-oral mucosa complex before spreading extraorally to produce a visibly destructive ulcer. Although cases of noma are now rarely reported in the developed countries, it is still prevalent among children in third world countries, notably in sub-Sahara Africa, where poverty, ignorance, malnutrition, and preventable childhood infections are still common. This review summarizes historical, epidemiological, management, and research updates on noma with suggestions for its prevention and ultimate global eradication. The global annual incidence remains high at about 140,000 cases, with a mortality rate exceeding 90% for untreated diseases. Where the patients survive, noma defects result in unsightly facial disfigurement, intense scarring, trismus, oral incompetence, and social alienation. Although the etiology has long been held to be infectious, a definitive causal role between microorganisms cited, and noma has been difficult to establish. The management of noma with active disease requires antibiotics followed by reconstructive surgery. Current research efforts are focused towards a comprehensive understanding of the epidemiology, and further elucidation of the microbiology and pathogenesis of noma

    The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology

    Get PDF
    Genetic screens are powerful tools to identify the genes required for a given biological process. However, for technical reasons, comprehensive screens have been restricted to very few model organisms. Therefore, although deep sequencing is revealing the genes of ever more insect species, the functional studies predominantly focus on candidate genes previously identified in Drosophila, which is biasing research towards conserved gene functions. RNAi screens in other organisms promise to reduce this bias. Here we present the results of the iBeetle screen, a large-scale, unbiased RNAi screen in the red flour beetle, Tribolium castaneum, which identifies gene functions in embryonic and postembryonic development, physiology and cell biology. The utility of Tribolium as a screening platform is demonstrated by the identification of genes involved in insect epithelial adhesion. This work transcends the restrictions of the candidate gene approach and opens fields of research not accessible in Drosophila

    Autoreactive epitopes defined by diabets-associated human monoclonal-antibodies are localited in the middle and C-Terminal domains of the smaller form of glutamate-decarboxylase

    No full text
    The gamma-aminobutyrate-synthesizing enzyme glutamate decarboxylase (GAD; L-glutamate 1-carboxy-lyase, EC 4.1.1.15) is a major target of autoantibodies associated with both early and late stages of pancreatic beta-cell destruction and development of type 1 diabetes. We have used five monoclonal anti-islet-cell antibodies (MICAs 1,2,3,4, and 6) derived from a newly diagnosed diabetic patient to probe the autoimmune epitopes in the enzyme. All the MICAs specifically recognized the smaller GAD protein, GAD65, and did not recognize the nonallelic GAD67 protein. A series of N-terminal, C-terminal, and internal deletion mutants, as well as protein footprinting, were used to identify the target regions in GAD65. Immunoprecipitation revealed two major native epitope areas in the GAD65 molecule. The first, defined by MICAs 1 and 3, is destroyed by deleting 41 amino acids at the C terminus but is also dependent on intact amino acids 244-295. This epitope (or epitopes) may span both middle and C-terminal domains of the protein. The second conformational epitope region, defined by MICAs 4 and 6, is dependent on intact amino acids 245-295 but is not affected by deletion of 110 amino acids at the C terminus and is therefore confined to domain(s) in the middle of the molecule. MICA 2 recognizes a linear epitope close to the C terminus. Thus, the N-terminal domain of GAD65, which differs most significantly from GAD67, does not harbor the MICA epitopes. Rather subtle amino acid differences in the middle and C-terminal domains define the GAD65-specific autoimmune epitopes. Analysis of sera from 10 type 1 diabetic patients suggests that MICAs 1, 3, 4, and 6 represent a common epitope recognition in this disease, whereas the MICA 2 epitope is rare. Furthermore, autoantibodies in some sera are restricted to the MICA 1/3 epitope, suggesting that this epitope may represent a single dominant epitope in the early phases of beta-cell autoimmunity

    Dissertation Reviews (Music Education)

    No full text
    corecore