17 research outputs found
Assisted coverage closure
Malfunction of safety-critical systems may cause damage to people and the environment. Software within those systems is rigorously designed and verified according to domain specific guidance, such as ISO26262 for automotive safety. This paper describes academic and industrial co-operation in tool development to support one of the most stringent of the requirements --- achieving full code coverage in requirements-driven testing.
We present a verification workflow supported by a tool that integrates the coverage measurement tool RapiCover with the test-vector generator FShell. The tool assists closing the coverage gap by providing the engineer with test vectors that help in debugging coverage-related code quality issues and creating new test cases, as well as justifying the presence of unreachable parts of the code in order to finally achieve full effective coverage according to the required criteria. We illustrate the tool's practical utility on automotive industry benchmarks. It generates 8 times more MC/DC coverage than random search
Comparison of Turbulence-Induced Scintillations for Multi-Wavelength Laser Beacons Over Tactical (7 km) and Long (149 km) Atmospheric Propagation Paths
We report results of the experimental analysis of atmospheric effects on laser beam propagation over two distinctive propagation paths: a long-range (149 km) propagation path between Mauna Loa (Island of Hawaii) and Haleakala (Island of Maui) mountains, and a tactical-range (7 km) propagation path between the roof of the Dayton Veterans Administration Medical Center (VAMC) and the Intelligent Optics Laboratory (IOL/UD) located on the 5th floor of the University of Dayton College Park Center building. Both testbeds include three laser beacons operating at wavelengths 532 nm, 1064 nm, and 1550 nm and a set of identical optical receiver systems with fast-framing IR cameras for simultaneous measurements of pupil and focal plane intensity distributions. The results reported here are focused on analysis of intensity scintillations that were simultaneously measured at three wavelengths. Comparison of experimental results shows significant differences in the physics of atmospheric turbulence impact on laser beam propagation over the long- and tactical-range distances
Reputation in European Trade Mark Law: A Re-examination
Under the harmonised European trade mark regime marks with a reputation enjoy expanded protection. This article casts doubt on whether this ‘reputational trigger’ can be justified. It then explores some difficult operational questions about the way the reputation threshold works in cases where the mark enjoys fame only in niche markets or in a limited geographical area, the aim being to illustrate further why reputation is an unsatisfactory trigger for a different type of trade mark protection. Finally, it looks at some of the evidential difficulties involved in adjudicating disputes in which expanded protection is being claimed. It concludes by suggesting that if the evidential problems we identify were tackled the reputation threshold could be abandoned
A Practical Tutorial on Modified Condition/Decision Coverage
This tutorial provides a practical approach to assessing modified condition/decision coverage (MC/DC) for aviation software products that must comply with regulatory guidance for DO-178B level A software. The tutorial's approach to MC/DC is a 5-step process that allows a certification authority or verification analyst to evaluate MC/DC claims without the aid of a coverage tool. In addition to the MC/DC approach, the tutorial addresses factors to consider in selecting and qualifying a structural coverage analysis tool, tips for reviewing life cycle data related to MC/DC, and pitfalls common to structural coverage analysis
Software Verification Considerations for the ARTIS Unmanned Rotorcraft
This work presents the processes and tools that were installed and developed to validate the ARTIS software and achieve compliance of an unmanned rotorcraft testbed with corresponding standards. A brief introduction to the autonomous guidance and navigation capabilities of our unmanned aircraft is given in order to illustrate the software complexity and practical integration challenges introduced
by such functionalities. Our software development process is presented which is aimed at a practical balance between exhaustive testing and the rapid integration of new features. It features a greedy integration procedure that is aimed at the preservation of existing features and performances. Automated tests drive the development of our mission planning, mission management and sensor fusion systems. New research code can be integrated such that side effects on existing systems are minimized