173 research outputs found

    Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy

    Get PDF
    A pathogenic strain of bacteria, Escherichia coli O157:H7 (enterohemorrhagic E. coli or EHEC), has been analyzed by laser-induced breakdown spectroscopy (LIBS) with nanosecond pulses and compared to three nonpathogenic E. coli strains: a laboratory strain of K-12 (AB), a derivative of the same strain termed HF4714, and an environmental strain, E. coli C (Nino C). A discriminant function analysis (DFA) was performed on the LIBS spectra obtained from live colonies of all four strains. Utilizing the emission intensity of 19 atomic and ionic transitions from trace inorganic elements, the DFA revealed significant differences between EHEC and the Nino C strain, suggesting the possibility of identifying and discriminating the pathogenic strain from commonly occurring environmental strains. EHEC strongly resembled the two K-12 strains, in particular, HF4714, making discrimination between these strains difficult. DFA was also used to analyze spectra from two of the nonpathogenic strains cultured in different media: on a trypticase soy (TS) agar plate and in a liquid TS broth. Strains cultured in different media were identified and effectively discriminated, being more similar than different strains cultured in identical media. All bacteria spectra were completely distinct from spectra obtained from the nutrient medium or ablation substrate alone. The ability to differentiate strains prepared and tested in different environments indicates that matrix effects and background contaminations do not necessarily preclude the use of LIBS to identify bacteria found in a variety of environments or grown under different conditions

    Towards the clinical application of laser-induced breakdown spectroscopy for rapid pathogen diagnosis: The effect of mixed cultures and sample dilution on bacterial identification

    Get PDF
    Laser-induced breakdown spectroscopy has been utilized to classify and identify bacterial specimens on the basis of their atomic composition. We have characterized the effect that the presence of a second bacterial species in the ablated specimen had on the identification of the majority species. Specimens with a reduced number of bacterial cells (approximately 2500) were identified with 100% accuracy when compared to undiluted specimens. In addition, a linear dependence of the total spectral power as a function of cell number was determined. Lastly, a high selectivity was obtained for a LIBS-based analysis of nine separate bacterial strains from four genera

    The effect of bacterial environmental and metabolic stresses on a laser-induced breakdown spectroscopy (LIBS) based identification of Escherichia coli and Streptococcus viridans

    Get PDF
    In this paper we investigate the effect that adverse environmental and metabolic stresses have on the laser-induced breakdown spectroscopy (LIBS) identification of bacterial specimens. Single-pulse LIBS spectra were acquired from a non-pathogenic strain of Escherichia coli cultured in two different nutrient media: a trypticase soy agar and a MacConkey agar with a 0.01% concentration of deoxycholate. A chemometric discriminant function analysis showed that the LIBS spectra acquired from bacteria grown in these two media were indistinguishable and easily discriminated from spectra acquired from two other non-pathogenic E. coli strains. LIBS spectra were obtained from specimens of a nonpathogenic E. coli strain and an avirulent derivative of the pathogen Streptococcus viridans in three different metabolic situations: live bacteria reproducing in the log-phase, bacteria inactivated on an abiotic surface by exposure to bactericidal ultraviolet irradiation, and bacteria killed via autoclaving. All bacteria were correctly identified regardless of their metabolic state. This successful identification suggests the possibility of testing specimens that have been rendered safe for handling prior to LIBS identification. This would greatly enhance personnel safety and lower the cost of a LIBS-based diagnostic test. LIBS spectra were obtained from pathogenic and non-pathogenic bacteria that were deprived of nutrition for a period of time ranging from one day to nine days by deposition on an abiotic surface at room temperature. All specimens were successfully classified by species regardless of the duration of nutrient deprivation

    Escherichia coli identification and strain discrimination using nanosecond laser-induced breakdown spectroscopy

    Get PDF
    Three strains of Escherichia coli, one strain of environmental mold, and one strain of Candida albicans yeast have been analyzed by laser-induced breakdown spectroscopy using nanosecond laser pulses. All microorganisms were analyzed while still alive and with no sample preparation. Nineteen atomic and ionic emission lines have been identified in the spectrum, which is dominated by calcium, magnesium, and sodium. A discriminant function analysis has been used to discriminate between the biotypes and E. coli strains. This analysis showed efficient discrimination between laser-induced breakdown spectroscopy spectra from different strains of a single bacteria species

    A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy

    Get PDF
    Nanosecond single-pulse laser-induced breakdown spectroscopy (LIBS) has been used to discriminate between two different genera of Gram-negative bacteria and between several strains of the Escherichia coli bacterium based on the relative concentration of trace inorganic elements in the bacteria. Of particular importance in all such studies to date has been the role of divalent cations, specifically Ca 2+ and Mg 2+, which are present in the membranes of Gram-negative bacteria and act to aggregate the highly polar lipopolysaccharide molecules. We have demonstrated that the source of emission from Ca and Mg atoms observed in LIBS plasmas from bacteria is at least partially located at the outer membrane by intentionally altering membrane biochemistry and correlating these changes with the observed changes in the LIBS spectra. The definitive assignment of some fraction of the LIBS emission to the outer membrane composition establishes a potential serological, or surface-antigen, basis for the laser-based identification. E. coli and Pseudomonas aeruginosa were cultured in three nutrient media: trypticase soy agar as a control, a MacConkey agar with a 0.01% concentration of bile salts including sodium deoxycholate, and a trypticase soy agar with a 0.4% deoxycholate concentration. The higher concentration of deoxycholate is known to disrupt bacterial outer membrane integrity and was expected to induce changes in the observed LIBS spectra. Altered LIBS emission was observed for bacteria cultured in this 0.4% medium and laser ablated in an all-argon environment. These spectra evidenced a reduced calcium emission and in the case of one species, a reduced magnesium emission. Culturing on the lower (0.01%) concentration of bile salts altered the LIBS spectra for both the P. aeruginosa and two strains of E. coli in a highly reproducible way, although not nearly as significantly as culturing in the higher concentration of deoxycholate did. This was possibly due to the accumulation of divalent cations around the bacteria by the formation of an extracellular polysaccharide capsule. Lastly, a discriminant function analysis demonstrated that in spite of alterations in the LIBS spectrum induced by growth in the three different media, the analysis could correctly identify all samples better than 90% of the time. This encouraging result illustrates the potential utility of LIBS as a rapid bacteriological identification technology. © 2009 American Institute of Physics

    Pathogen identification with laser-induced breakdown spectroscopy: The effect of bacterial and biofluid specimen contamination

    Get PDF
    In this paper, the potential use of laser-induced breakdown spectroscopy (LIBS) for the rapid discrimination and identification of bacterial pathogens in realistic clinical specimens is investigated. Specifically, the common problem of sample contamination was studied by creating mixed samples to investigate the effect that the presence of a second contaminant bacterium in the specimen had on the LIBS-based identification of the primary pathogen. Two closely related bacterial specimens, Escherichia coli strain ATCC 25922 and Enterobacter cloacae strain ATCC 13047, were mixed together in mixing fractions of 10:1, 100:1, and 1000:1. LIBS spectra from the three mixtures were reliably classified as the correct E. coli strain with 98.5% accuracy when all the mixtures were withheld from the training model and classified against spectra from pure specimens. To simulate a rapid test for the presence of urinary tract infection pathogens, LIBS spectra were obtained from specimens of Staphylococcus epidermidis obtained from distilled water and sterile urine. LIBS spectra from the urine-harvested bacteria were classified as S. epidermidis with 100% accuracy when classified using a model containing only spectra from other Staphylococci species and with 88.5% accuracy when a model containing five genera of bacteria was utilized. Bacterial specimens comprising five different genera and 13 classifiable taxonomic groups of species and strains were compiled in a library that was tested using external validation techniques. The importance of utilizing external validation techniques where the library is tested with data withheld from all previous testing and training of the model was revealed by comparing the results against leave-one-out cross-validation results. Last, the effect of using sequential models for the classification of a single unknown spectrum was investigated by comparing the misclassification of two closely related bacteria, E. coli and E. cloacae, when the classification was first performed using the five-genus bacterial library and then with a smaller model consisting only of E. coli and E. cloacae specimens. This result shows the utility of using successively more targeted analyses and models that use preliminary classifications from more general models as input

    Optimized loading of an optical dipole trap for the production of Chromium BECs

    Full text link
    We report on a strategy to maximize the number of chromium atoms transferred from a magneto-optical trap into an optical trap through accumulation in metastable states via strong optical pumping. We analyse how the number of atoms in a chromium Bose Einstein condensate can be raised by a proper handling of the metastable state populations. Four laser diodes have been implemented to address the four levels that are populated during the MOT phase. The individual importance of each state is specified. To stabilize two of our laser diode, we have developed a simple ultrastable passive reference cavity whose long term stability is better than 1 MHz

    The Interface Region Imaging Spectrograph (IRIS)

    Get PDF
    The Interface Region Imaging Spectrograph (IRIS) small explorer spacecraft provides simultaneous spectra and images of the photosphere, chromosphere, transition region, and corona with 0.33-0.4 arcsec spatial resolution, 2 s temporal resolution and 1 km/s velocity resolution over a field-of-view of up to 175 arcsec x 175 arcsec. IRIS was launched into a Sun-synchronous orbit on 27 June 2013 using a Pegasus-XL rocket and consists of a 19-cm UV telescope that feeds a slit-based dual-bandpass imaging spectrograph. IRIS obtains spectra in passbands from 1332-1358, 1389-1407 and 2783-2834 Angstrom including bright spectral lines formed in the chromosphere (Mg II h 2803 Angstrom and Mg II k 2796 Angstrom) and transition region (C II 1334/1335 Angstrom and Si IV 1394/1403 Angstrom). Slit-jaw images in four different passbands (C II 1330, Si IV 1400, Mg II k 2796 and Mg II wing 2830 Angstrom) can be taken simultaneously with spectral rasters that sample regions up to 130 arcsec x 175 arcsec at a variety of spatial samplings (from 0.33 arcsec and up). IRIS is sensitive to emission from plasma at temperatures between 5000 K and 10 MK and will advance our understanding of the flow of mass and energy through an interface region, formed by the chromosphere and transition region, between the photosphere and corona. This highly structured and dynamic region not only acts as the conduit of all mass and energy feeding into the corona and solar wind, it also requires an order of magnitude more energy to heat than the corona and solar wind combined. The IRIS investigation includes a strong numerical modeling component based on advanced radiative-MHD codes to facilitate interpretation of observations of this complex region. Approximately eight Gbytes of data (after compression) are acquired by IRIS each day and made available for unrestricted use within a few days of the observation.Comment: 53 pages, 15 figure

    Beating the blues after Cancer: randomised controlled trial of a tele-based psychological intervention for high distress patients and carers

    Get PDF
    Background: The diagnosis and treatment of cancer is a major life stress such that approximately 35% of patients experience persistent clinically significant distress and carers often experience even higher distress than patients. This paper presents the design of a two arm randomised controlled trial with patients and carers who have elevated psychological distress comparing minimal contact self management vs. an individualised tele-based cognitive behavioural intervention. Methods/design: 140 patients and 140 carers per condition (560 participants in total) will been recruited after being identified as high distress through caller screening at two community-based cancer helplines and randomised to 1) a single 30-minute telephone support and education session with a nurse counsellor with self management materials 2) a tele-based psychologist delivered five session individualised cognitive behavioural intervention. Session components will include stress reduction, problem-solving, cognitive challenging and enhancing relationship support and will be delivered weekly. Participants will be assessed at baseline and 3, 6 and 12 months after recruitment. Outcome measures include: anxiety and depression, cancer specific distress, unmet psychological supportive care needs, positive adjustment, overall Quality of life. Discussion: The study will provide recommendations about the efficacy and potential economic value of minimal contact self management vs. tele-based psychologist delivered cognitive behavioural intervention to facilitate better psychosocial adjustment and mental health for people with cancer and their carers
    • …
    corecore