1,645 research outputs found

    New developments in the statistical approach of parton distributions

    Get PDF
    We recall how parton distributions are constructed in a statistical physical picture of the nucleon. The chiral properties of QCD lead to strong relations between quarks and antiquarks distributions and the importance of the Pauli exclusion principle is also emphasized. A global next-to-leading order QCD analysis of unpolarized and polarized deep-inelastic scattering data allows to determine a small number of free parameters. Some predictions are compared to recent experimental results and we discuss the prospects of this physical framework.Comment: 10 pages, 12 figures. Invited talk presented at the " Corfu Summer Institute on EPP,CORFU2005, Corfu, Greece, September 4-26, 2005. To be published in Journal of Physics, Conference Series (2006

    Ab-initio design of perovskite alloys with predetermined properties: The case of Pb(Sc_{0.5} Nb_{0.5})O_{3}

    Full text link
    A first-principles derived approach is combined with the inverse Monte Carlo technique to determine the atomic orderings leading to prefixed properties in Pb(Sc_{0.5}Nb_{0.5})O_{3} perovskite alloy. We find that some arrangements between Sc and Nb atoms result in drastic changes with respect to the disordered material, including ground states of new symmetries, large enhancement of electromechanical responses, and considerable shift of the Curie temperature. We discuss the microscopic mechanisms responsible for these unusual effects.Comment: 5 pages with 2 postscript figures embedde

    Phenomenological model of elastic distortions near the spin-Peierls transition in CuGeO3CuGeO_3

    Full text link
    A phenomenological model of the Landau type forms the basis for a study of elastic distortions near the spin-Peierls transition TcT_c in CuGeO3CuGeO_3. The atomic displacements proposed by Hirota {\it et al.} [Phys. Rev. Lett. {\bf 73}, 736 (1994)] are accounted for by the model which includes linear coupling between CuCu and OO distortions. CuCu displacements are seen to be responsible for anomalies in the elastic properties {\it at} TcT_c, whereas incipient OO distortions give rise to temperature dependence below TcT_c. A discussion of possible critical behavior is also made.Comment: 1 figure available upon reques

    Determination of the high-pressure crystal structure of BaWO4 and PbWO4

    Full text link
    We report the results of both angle-dispersive x-ray diffraction and x-ray absorption near-edge structure studies in BaWO4 and PbWO4 at pressures of up to 56 GPa and 24 GPa, respectively. BaWO4 is found to undergo a pressure-driven phase transition at 7.1 GPa from the tetragonal scheelite structure (which is stable under normal conditions) to the monoclinic fergusonite structure whereas the same transition takes place in PbWO4 at 9 GPa. We observe a second transition to another monoclinic structure which we identify as that of the isostructural phases BaWO4-II and PbWO4-III (space group P21/n). We have also performed ab initio total energy calculations which support the stability of this structure at high pressures in both compounds. The theoretical calculations further find that upon increase of pressure the scheelite phases become locally unstable and transform displacively into the fergusonite structure. The fergusonite structure is however metastable and can only occur if the transition to the P21/n phases were kinetically inhibited. Our experiments in BaWO4 indicate that it becomes amorphous beyond 47 GPa.Comment: 46 pages, 11 figures, 3 table

    A Review of Target Mass Corrections

    Full text link
    With recent advances in the precision of inclusive lepton--nuclear scattering experiments, it has become apparent that comparable improvements are needed in the accuracy of the theoretical analysis tools. In particular, when extracting parton distribution functions in the large-x region, it is crucial to correct the data for effects associated with the nonzero mass of the target. We present here a comprehensive review of these target mass corrections (TMC) to structure functions data, summarizing the relevant formulas for TMCs in electromagnetic and weak processes. We include a full analysis of both hadronic and partonic masses, and trace how these effects appear in the operator product expansion and the factorized parton model formalism, as well as their limitations when applied to data in the x->1 limit. We evaluate the numerical effects of TMCs on various structure functions, and compare fits to data with and without these corrections.Comment: 41 pages, 13 figures; minor updates to match published versio

    A combined high-pressure experimental and theoretical study of the electronic band-structure of scheelite-type AWO4 (A = Ca, Sr, Ba, Pb) compounds

    Full text link
    The optical-absorption edge of single crystals of CaWO4, SrWO4, BaWO4, and PbWO4 has been measured under high pressure up to ~20 GPa at room temperature. From the measurements we have obtained the evolution of the band-gap energy with pressure. We found a low-pressure range (up to 7-10 GPa) where alkaline-earth tungstates present a very small Eg pressure dependence (-2.1 < dEg/dP < 8.9 meV/GPa). In contrast, in the same pressure range, PbWO4 has a pressure coefficient of -62 meV/GPa. The high-pressure range is characterized in the four compounds by an abrupt decrease of Eg followed by changes in dEg/dP. The band-gap collapse is larger than 1.2 eV in BaWO4. We also calculated the electronic-band structures and their pressure evolution. Calculations allow us to interpret experiments considering the different electronic configuration of divalent metals. Changes in the pressure evolution of Eg are correlated with the occurrence of pressure-induced phase transitions. The band structures for the low- and high-pressure phases are also reported. No metallization of any of the compounds is detected in experiments nor is predicted by calculations.Comment: 26 pages, 1 table, 6 figure

    Crossover between a displacive and an order-disorder phase transition

    Get PDF
    The phase transition in a three-dimensional array of classical anharmonic oscillators with harmonic nearest-neighbor coupling (discrete φ 4 model) is studied by Monte Carlo (MC) simulations and by analytical methods. The model allows us to choose a single dimensionless parameter a determining completely the behavior of the system. Changing a from 0 to + ∞ allows to go continuously from the displacive to the order-disorder limit. We calculate the transition temperature T c and the temperature dependence of the order parameter down to T = 0 for a wide range of the parameter a. The T c from MC calculations shows an excellent agreement with the known asymptotic values for small and large a. The obtained MC results are further compared with predictions of the mean-field and independent-mode approximations as well as with predictions of our own approximation scheme. In this approximation, we introduce an auxiliary system, which yields approximately the same temperature behavior of the order parameter, but allows the decoupling of the phonon modes. Our approximation gives the value of T c within an error of 5% and satisfactorily describes the temperature dependence of the order parameter for all values of a
    • 

    corecore