18,497 research outputs found

    Micrometre-scale refrigerators

    Get PDF
    A superconductor with a gap in the density of states or a quantum dot with discrete energy levels is a central building block in realizing an electronic on-chip cooler. They can work as energy filters, allowing only hot quasiparticles to tunnel out from the electrode to be cooled. This principle has been employed experimentally since the early 1990s in investigations and demonstrations of micrometre-scale coolers at sub-kelvin temperatures. In this paper, we review the basic experimental conditions in realizing the coolers and the main practical issues that are known to limit their performance. We give an update of experiments performed on cryogenic micrometre-scale coolers in the past five years

    Outsourcing network management

    Get PDF
    The paper analyses the current situation in outsourcing of IT and network management through the literature review and examples in industry. We have focused on trends, benefits and risks in outsourcing network management and made proposals to address the problems through a carefully managed network outsourcing relationship. The available statistics and the the survey of six UK companies has revealed that the upfront negotiation of service level agreements should be one of the most important aspects of conducting the outsourcing of network management

    Guide to the use of Mariner images

    Get PDF
    Planetary imaging from unmanned spacecraft, almost exclusively done by digital systems, is examined. The Mars Mariner 9 television camera, representative of such systems, is considered. Each image consists of 700 lines, each containing 832 picture elements, or pixels. Each pixel contains nine binary bits of information capable of displaying 512 discrete brightness levels. Several problems inherent in television systems are discussed. These include nonuniform target response, residual images, noise, and blemishes. These defects can be removed to some extent by decalibration of the image. The final product is geometrically corrected for camera distortion and photometrically corrected. Several versions of the decalibrated images are available. The most generally useful are the geometrically corrected images with enhanced contrast. The Mariner 10 imaging of Mercury is briefly discussed

    Mars: Seasonally variable radar reflectivity

    Get PDF
    Since reflectivity is a quantity characteristic of a given target at a particular geometry, the same (temporally unchanging) target examined by radar on different occasions should have the same reflectivity. Zisk and Mouginis-Mark noted that the average reflectivities in the Goldstone Mars data increased as the planet's S hemisphere passed from the late spring into early summer. The same data set was re-examined and the presence of the phenomenon of the apparent seasonal variability of radar reflectivity was confirmed. Two objections to these findings are addressed: (1) reflectivity variations may be present in the Goldstone Mars data as a result of an instrument/calibration error; and (2) the variations were introduced into the analysis through comparing reflectivities from two incompatible subsets of the data

    Mars: Seasonally variable radar reflectivity

    Get PDF
    The 1971/1973 Mars data set acquired by the Goldstone Solar System Radar was analyzed. It was established that the seasonal variations in radar reflectivity thought to occur in only one locality on the planet (the Solis Lacus radar anomaly) occur, in fact, over the entire subequatorial belt observed by the Goldstone radar. Since liquid water appears to be the most likely cause of the reflectivity excursions, a permanent, year-round presence of subsurface water (frozen or thawed) in the Martian tropics can be inferred

    Design approaches to more energy efficient engines

    Get PDF
    The status of NASA's Energy Efficient Engine Project, a comparative government-industry effort aimed at advancing the technology base for the next generation of large turbofan engines for civil aircraft transports is summarized. Results of recently completed studies are reviewed. These studies involved selection of engine cycles and configurations that offer potential for at least 12% lower fuel consumption than current engines and also are economically attractive and environmentally acceptable. Emphasis is on the advancements required in component technologies and systems design concepts to permit future development of these more energy efficient engines

    Integrated control system for a gas turbine engine

    Get PDF
    A control system for a turbofan engine receives signals from a number of engine sensors and from the engine operator, and generates control signals. One control signal regulates the fan exhaust nozzle area in order to control inlet throat Mach number to maintain a low level of engine noise. Additional control signals regulate fuel flow to control engine thrust and fan pitch to control fan speed. A number of schedules are utilized to maintain a predetermined relationship between the controlled parameters and a number of fixed and calculated limits can override the control signals to prevent unsatisfactory engine performance

    Luminosity Density of Galaxies and Cosmic Star Formation Rate from Lambda-CDM Hydrodynamical Simulations

    Full text link
    We compute the cosmic star formation rate (SFR) and the rest-frame comoving luminosity density in various pass-bands as a function of redshift using large-scale \Lambda-CDM hydrodynamical simulations with the aim of understanding their behavior as a function of redshift. To calculate the luminosity density of galaxies, we use an updated isochrone synthesis model which takes metallicity variations into account. The computed SFR and the UV-luminosity density have a steep rise from z=0 to 1, a moderate plateau between z=1 - 3, and a gradual decrease beyond z=3. The raw calculated results are significantly above the observed luminosity density, which can be explained either by dust extinction or the possibly inappropriate input parameters of the simulation. We model the dust extinction by introducing a parameter f; the fraction of the total stellar luminosity (not galaxy population) that is heavily obscured and thus only appears in the far-infrared to sub-millimeter wavelength range. When we correct our input parameters, and apply dust extinction with f=0.65, the resulting luminosity density fits various observations reasonably well, including the present stellar mass density, the local B-band galaxy luminosity density, and the FIR-to-submm extragalactic background. Our result is consistent with the picture that \sim 2/3 of the total stellar emission is heavily obscured by dust and observed only in the FIR. The rest of the emission is only moderately obscured which can be observed in the optical to near-IR wavelength range. We also argue that the steep falloff of the SFR from z=1 to 0 is partly due to the shock-heating of the universe at late times, which produces gas which is too hot to easily condense into star-forming regions.Comment: 25 pages, 6 figures. Accepted version in ApJ. Substantially revised from the previous version. More emphasis on the comparison with various observations and the hidden star formation by dust extinctio

    System optimization of gasdynamic lasers, computer program user's manual

    Get PDF
    The user's manual for a computer program that performs system optimization of gasdynamic lasers is provided. Detailed input/output formats are CDC 7600/6600 computers using a dialect of FORTRAN. Sample input/output data are provided to verify correct program operation along with a program listing
    • …
    corecore