9,158 research outputs found

    Convective–reactive nucleosynthesis of K, Sc, Cl and p-process isotopes in O–C shell mergers

    Get PDF
    © 2017 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. We address the deficiency of odd-Z elements P, Cl, K and Sc in Galactic chemical evolution models through an investigation of the nucleosynthesis of interacting convective O and C shells in massive stars. 3D hydrodynamic simulations of O-shell convection with moderate C-ingestion rates show no dramatic deviation from spherical symmetry. We derive a spherically averaged diffusion coefficient for 1D nucleosynthesis simulations, which show that such convective-reactive ingestion events can be a production site for P, Cl, K and Sc. An entrainment rate of 10-3M⊙s-1features overproduction factors OPs≈ 7. Full O-C shell mergers in our 1D stellar evolution massive star models have overproduction factors OPm> 1 dex but for such cases 3D hydrodynamic simulations suggest deviations from spherical symmetry. γ - process species can be produced with overproduction factors of OPm> 1 dex, for example, for130, 132Ba. Using the uncertain prediction of the 15M⊙, Z = 0.02 massive star model (OPm≈ 15) as representative for merger or entrainment convective-reactive events involving O- and C-burning shells, and assume that such events occur in more than 50 per cent of all stars, our chemical evolution models reproduce the observed Galactic trends of the odd-Z elements

    Neutron inelastic scattering investigation of the magnetic excitations in Cu_2Te_2O_5X_2 (X=Br, Cl)

    Full text link
    Neutron inelastic scattering investigations have been performed on the spin tetrahedral system Cu_2Te_2O_5X_2 (X = Cl, Br). We report the observation of magnetic excitations with a dispersive component in both compounds, associated with the 3D incommensurate magnetic order that develops below TNClT^{Cl}_{N}=18.2 K and TNBrT^{Br}_{N}=11.4 K. The excitation in Cu_2Te_2O_5Cl_2 softens as the temperature approaches TNClT^{Cl}_{N}, leaving diffuse quasi-elastic scattering above the transition temperature. In the bromide, the excitations are present well above TNBrT^{Br}_{N}, which might be attributed to the presence of a degree of low dimensional correlations above TNBrT^{Br}_{N} in this compound

    Investigation of topographical stability of the concave and convex Self-Organizing Map variant

    Get PDF
    We investigate, by a systematic numerical study, the parameter dependence of the stability of the Kohonen Self-Organizing Map and the Zheng and Greenleaf concave and convex learning with respect to different input distributions, input and output dimensions

    Calculating Kaon Fragmentation Functions from NJL-Jet Model

    Full text link
    The Nambu--Jona-Lasinio (NJL) - Jet model provides a sound framework for calculating the fragmentation functions in an effective chiral quark theory, where the momentum and isospin sum rules are satisfied without the introduction of ad hoc parameters. Earlier studies of the pion fragmentation functions using the NJL model within this framework showed qualitative agreement with the empirical parameterizations. Here we extend the NJL-Jet model by including the strange quark. The corrections to the pion fragmentation functions and corresponding kaon fragmentation functions are calculated using the elementary quark to quark-meson fragmentation functions from NJL. The results for the kaon fragmentation functions exhibit a qualitative agreement with the empirical parameterizations, while the unfavored strange quark fragmentation to pions is shown to be of the same order of magnitude as the unfavored light quark's. The results of these studies are expected to provide important guidance for the analysis of a large variety of semi-inclusive data.Comment: 9 pages, 14 figure

    Remote sensing research for agricultural applications

    Get PDF
    Materials and methods used to characterize selected soil properties and agricultural crops in San Joaquin County, California are described. Results show that: (1) the location and widths of TM bands are suitable for detecting differences in selected soil properties; (2) the number of TM spectral bands allows the quantification of soil spectral curve form and magnitude; and (3) the spatial and geometric quality of TM data allows for the discrimination and quantification of within field variability of soil properties. The design of the LANDSAT based multiple crop acreage estimation experiment for the Idaho Department of Water Resources is described including the use of U.C. Berkeley's Survey Modeling Planning Model. Progress made on Peditor software development on MIDAS, and cooperative computing using local and remote systems is reported as well as development of MIDAS microcomputer systems

    Wigner flow reveals topological order in quantum phase space dynamics

    Get PDF
    The behaviour of classical mechanical systems is characterised by their phase portraits, the collections of their trajectories. Heisenberg's uncertainty principle precludes the existence of sharply defined trajectories, which is why traditionally only the time evolution of wave functions is studied in quantum dynamics. These studies are quite insensitive to the underlying structure of quantum phase space dynamics. We identify the flow that is the quantum analog of classical particle flow along phase portrait lines. It reveals hidden features of quantum dynamics and extra complexity. Being constrained by conserved flow winding numbers, it also reveals fundamental topological order in quantum dynamics that has so far gone unnoticed.Comment: 6 pages, 6 figure

    Interactive Digital Music: Enhancing Listener Engagement with Commercial Music

    Get PDF
    Listeners have long been inspired to interact with music and create new representations of popular releases. Vinyl offered many opportunities to reappropriate chart music, from scratching and tempo manipulation to mixing multiple songs together. More recently, artists could engage their audience to interact with their music by offering mix-stems online for experimentation and sharing. With the extended processing power of mobile devices, the opportunities for interactive music are dramatically increasing. This paper presents research that demonstrates a novel approach to interactive digital music. The research looks at the emergent format of the album app and extends existing paradigms of interactive music playback. The novel album app designed in this research presents a new opportunity for listeners to engage with recorded content by allowing them to explore alternative takes, renditions of a given song in multiple genres, and by allowing direct interaction with embedded mix-stems. The resultant audio remains true to the artist and producer’s studio vision; it is user-influenced, but machine-controlled. The research is conducted in collaboration with artist Daisy and The Dark and was funded by the UK Arts and Humanities Research Council
    • …
    corecore