9,247 research outputs found
Convective–reactive nucleosynthesis of K, Sc, Cl and p-process isotopes in O–C shell mergers
© 2017 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. We address the deficiency of odd-Z elements P, Cl, K and Sc in Galactic chemical evolution models through an investigation of the nucleosynthesis of interacting convective O and C shells in massive stars. 3D hydrodynamic simulations of O-shell convection with moderate C-ingestion rates show no dramatic deviation from spherical symmetry. We derive a spherically averaged diffusion coefficient for 1D nucleosynthesis simulations, which show that such convective-reactive ingestion events can be a production site for P, Cl, K and Sc. An entrainment rate of 10-3M⊙s-1features overproduction factors OPs≈ 7. Full O-C shell mergers in our 1D stellar evolution massive star models have overproduction factors OPm> 1 dex but for such cases 3D hydrodynamic simulations suggest deviations from spherical symmetry. γ - process species can be produced with overproduction factors of OPm> 1 dex, for example, for130, 132Ba. Using the uncertain prediction of the 15M⊙, Z = 0.02 massive star model (OPm≈ 15) as representative for merger or entrainment convective-reactive events involving O- and C-burning shells, and assume that such events occur in more than 50 per cent of all stars, our chemical evolution models reproduce the observed Galactic trends of the odd-Z elements
Neutron inelastic scattering investigation of the magnetic excitations in Cu_2Te_2O_5X_2 (X=Br, Cl)
Neutron inelastic scattering investigations have been performed on the spin
tetrahedral system Cu_2Te_2O_5X_2 (X = Cl, Br). We report the observation of
magnetic excitations with a dispersive component in both compounds, associated
with the 3D incommensurate magnetic order that develops below =18.2
K and =11.4 K. The excitation in Cu_2Te_2O_5Cl_2 softens as the
temperature approaches , leaving diffuse quasi-elastic scattering
above the transition temperature. In the bromide, the excitations are present
well above , which might be attributed to the presence of a degree
of low dimensional correlations above in this compound
Calculating Kaon Fragmentation Functions from NJL-Jet Model
The Nambu--Jona-Lasinio (NJL) - Jet model provides a sound framework for
calculating the fragmentation functions in an effective chiral quark theory,
where the momentum and isospin sum rules are satisfied without the introduction
of ad hoc parameters. Earlier studies of the pion fragmentation functions using
the NJL model within this framework showed qualitative agreement with the
empirical parameterizations. Here we extend the NJL-Jet model by including the
strange quark. The corrections to the pion fragmentation functions and
corresponding kaon fragmentation functions are calculated using the elementary
quark to quark-meson fragmentation functions from NJL. The results for the kaon
fragmentation functions exhibit a qualitative agreement with the empirical
parameterizations, while the unfavored strange quark fragmentation to pions is
shown to be of the same order of magnitude as the unfavored light quark's. The
results of these studies are expected to provide important guidance for the
analysis of a large variety of semi-inclusive data.Comment: 9 pages, 14 figure
Investigation of topographical stability of the concave and convex Self-Organizing Map variant
We investigate, by a systematic numerical study, the parameter dependence of
the stability of the Kohonen Self-Organizing Map and the Zheng and Greenleaf
concave and convex learning with respect to different input distributions,
input and output dimensions
Remote sensing research for agricultural applications
Materials and methods used to characterize selected soil properties and agricultural crops in San Joaquin County, California are described. Results show that: (1) the location and widths of TM bands are suitable for detecting differences in selected soil properties; (2) the number of TM spectral bands allows the quantification of soil spectral curve form and magnitude; and (3) the spatial and geometric quality of TM data allows for the discrimination and quantification of within field variability of soil properties. The design of the LANDSAT based multiple crop acreage estimation experiment for the Idaho Department of Water Resources is described including the use of U.C. Berkeley's Survey Modeling Planning Model. Progress made on Peditor software development on MIDAS, and cooperative computing using local and remote systems is reported as well as development of MIDAS microcomputer systems
Wigner flow reveals topological order in quantum phase space dynamics
The behaviour of classical mechanical systems is characterised by their phase
portraits, the collections of their trajectories. Heisenberg's uncertainty
principle precludes the existence of sharply defined trajectories, which is why
traditionally only the time evolution of wave functions is studied in quantum
dynamics. These studies are quite insensitive to the underlying structure of
quantum phase space dynamics. We identify the flow that is the quantum analog
of classical particle flow along phase portrait lines. It reveals hidden
features of quantum dynamics and extra complexity. Being constrained by
conserved flow winding numbers, it also reveals fundamental topological order
in quantum dynamics that has so far gone unnoticed.Comment: 6 pages, 6 figure
Interactive Digital Music: Enhancing Listener Engagement with Commercial Music
Listeners have long been inspired to interact with music and create new representations of popular releases. Vinyl offered many opportunities to reappropriate chart music, from scratching and tempo manipulation to mixing multiple songs together. More recently, artists could engage their audience to interact with their music by offering mix-stems online for experimentation and sharing. With the extended processing power of mobile devices, the opportunities for interactive music are dramatically increasing.
This paper presents research that demonstrates a novel approach to interactive digital music. The research looks at the emergent format of the album app and extends existing paradigms of interactive music playback. The novel album app designed in this research presents a new opportunity for listeners to engage with recorded content by allowing them to explore alternative takes, renditions of a given song in multiple genres, and by allowing direct interaction with embedded mix-stems. The resultant audio remains true to the artist and producer’s studio vision; it is user-influenced, but machine-controlled. The research is conducted in collaboration with artist Daisy and The Dark and was funded by the UK Arts and Humanities Research Council
- …