1,020 research outputs found

    A rapid and quantitative technique for assessing IgG monomeric purity, calibrated with the NISTmAb reference material

    Get PDF
    This is the final version. Available from Springer via the DOI in this record.The fraction of intact monomer in a sample (moles/moles), the monomeric purity, is measured as a quality control in therapeutic monoclonal antibodies but is often unknown in research samples and remains a major source of variation in quantitative antibody-based techniques such as immunoassay development. Here, we describe a novel multiplex technique for estimating the monomeric purity and antigen affinity of research grade antibody samples. Light scattering was used to simultaneously observe the mass of antibody binding to biosensor surfaces functionalised with antigen (revealing Fab binding kinetics) or protein A/G (PAG). Initial estimates of monomeric purity in 7 antibody samples including a therapeutic infliximab biosimilar were estimated by observing a mass deficit on the PAG surface compared to the NISTmAb standard of high monomeric purity. Monomeric purity estimates were improved in a second step by observing the mass of antigen binding to the mass of antibody on the PAG surface. The NISTmAb and infliximab biosimilar displayed tightly controlled stoichiometries for antigen binding of 1.31 ± 0.57 and 1.71 ± 0.16 (95% confidence interval)—within the theoretical limit of 1–2 antigens per antibody depending on avidity. The other antibodies in the panel displayed antigen binding stoichiometries in the range 0.06–1.15, attributed to lower monomeric purity. The monomeric purity estimates were verified by electrospray ionization mass spectrometry (ESI), the gold standard technique for structural characterization of antibodies. ESI data indicated that the NISTmAb and infliximab biosimilar samples had monomeric purity values of 93.5% and 94.7%, respectively, whilst the research grade samples were significantly lower (54–89%). Our results demonstrate rapid quality control testing for monomeric purity of antibody samples (< 15 min) which could improve the reproducibility of antibody-based experiments.EPSR

    Antibiotic prescribing decisions in intensive care: A qualitative study

    Get PDF

    A large-scale R-matrix calculation for electron-impact excitation of the Ne2+^{2+} O-like ion

    Full text link
    The five JΠ\Pi levels within a np2np^2 or np4np^4 ground state complex provide an excellent testing ground for the comparison of theoretical line ratios with astrophysically observed values, in addition to providing valuable electron temperature and density diagnostics. The low temperature nature of the line ratios ensure that the theoretically derived values are sensitive to the underlying atomic structure and electron-impact excitation rates. Previous R-matrix calculations for the Ne2+^{2+} O-like ion exhibit large spurious structure in the cross sections at higher electron energies, which may affect Maxwellian averaged rates even at low temperatures. Furthermore, there is an absence of comprehensive excitation data between the excited states that may provide newer diagnostics to compliment the more established lines discussed in this paper. To resolve these issues, we present both a small scale 56-level Breit-Pauli (BP) calculation and a large-scale 554 levels R-matrix Intermediate Coupling Frame Transformation (ICFT) calculation that extends the scope and validity of earlier JAJOM calculations both in terms of the atomic structure and scattering cross sections. Our results provide a comprehensive electron-impact excitation data set for all transitions to higher nn shells. The fundamental atomic data for this O-like ion is subsequently used within a collisional radiative framework to provide the line ratios across a range of electron temperatures and densities of interest in astrophysical observations.Comment: 17 pages, 8 figure

    K-shell photoionization of ground-state Li-like boron ions [B2+^{2+}]: Experiment and Theory

    Full text link
    Absolute cross sections for the K-shell photoionization of ground-state Li-like boron [B2+^{2+}(1s2^22s 2^2S)] ions were measured by employing the ion-photon merged-beams technique at the Advanced Light Source synchrotron radiation facility. The energy ranges 197.5--200.5 eV, 201.9--202.1 eV of the [1s(2s\,2p)3^3P]2^2Po{\rm ^o} and [1s(2s\,2p)1^1P] 2^2Po{\rm ^o} resonances, respectively, were investigated using resolving powers of up to 17\,600. The energy range of the experiments was extended to about 238.2 eV yielding energies of the most prominent [1s(2ℓ\ell\,nℓâ€Č\ell^{\prime})]2^2Po^o resonances with an absolute accuracy of the order of 130 ppm. The natural linewidths of the [1s(2s\,2p)3^3P] 2^2Po{\rm ^o} and [1s(2s\,2p)1^1P] 2^2Po{\rm ^o} resonances were measured to be 4.8±0.64.8 \pm 0.6 meV and 29.7±2.529.7 \pm 2.5 meV, respectively, which compare favourably with theoretical results of 4.40 meV and 30.53 meV determined using an intermediate coupling R-matrix method.Comment: 6 figures and 2 table

    Visualizing internetworked argumentation

    Get PDF
    In this chapter, we outline a project which traces its source of inspiration back to the grand visions of Vannevar Bush (scholarly trails of linked concepts), Doug Engelbart (highly interactive intellectual tools, particularly for argumentation), and Ted Nelson (large scale internet publishing with recognised intellectual property). In essence, we are tackling the age-old question of how to organise distributed, collective knowledge. Specifically, we pose the following question as a foil: In 2010, will scholarly knowledge still be published solely in prose, or can we imagine a complementary infrastructure that is ‘native’ to the emerging semantic, collaborative web, enabling more effective dissemination and analysis of ideas

    State-resolved valence shell photoionization of Be-like ions: experiment and theory

    Full text link
    High-resolution photoionization experiments were carried out using beams of Be-like C2+^{2+}, N3+^{3+}, and O4+^{4+} ions with roughly equal populations of the 1^1S ground-state and the 3^3Po^o manifold of metastable components. The energy scales of the experiments are calibrated with uncertainties of 1 to 10 meV depending on photon energy. Resolving powers beyond 20,000 were reached allowing for the separation of contributions from the individual metastable 3^3P0o^o_0, 3^3P1o^o_1, and 3^3P2o^o_2 states. The measured data compare favourably with semi-relativistic Breit-Pauli R-matrixComment: 23 figures and 3 table

    K-shell photoionization of ground-state Li-like carbon ions [C3+^{3+}]: experiment, theory and comparison with time-reversed photorecombination

    Full text link
    Absolute cross sections for the K-shell photoionization of ground-state Li-like carbon [C3+^{3+}(1s2^22s 2^2S)] ions were measured by employing the ion-photon merged-beams technique at the Advanced Light Source. The energy ranges 299.8--300.15 eV, 303.29--303.58 eV and 335.61--337.57 eV of the [1s(2s2p)3^3P]2^2P, [1s(2s2p)1^1P]2^2P and [(1s2s)3^3S 3p]2^2P resonances, respectively, were investigated using resolving powers of up to 6000. The autoionization linewidth of the [1s(2s2p)1^1P]2^2P resonance was measured to be 27±527 \pm 5 meV and compares favourably with a theoretical result of 26 meV obtained from the intermediate coupling R-Matrix method. The present photoionization cross section results are compared with the outcome from photorecombination measurements by employing the principle of detailed balance.Comment: 3 figures and 2 table

    Genetic Patterns in Peripheral Marine Populations of the Fusilier Fish Caesio Cuning Within the Kuroshio Current

    Get PDF
    Aim: Mayr’s central‐peripheral population model (CCPM) describes the marked differences between central and peripheral populations in genetic diversity, gene flow, and census size. When isolation leads to genetic divergence, these peripheral populations have high evolutionary value and can influence biogeographic patterns. In tropical marine species with pelagic larvae, powerful western‐boundary currents have great potential to shape the genetic characteristics of peripheral populations at latitudinal extremes. We tested for the genetic patterns expected by the CCPM in peripheral populations that are located within the Kuroshio Current for the Indo‐Pacific reef fish, Caesio cuning. Methods: We used a panel of 2,677 SNPs generated from restriction site‐associated DNA (RAD) sequencing to investigate genetic diversity, relatedness, effective population size, and spatial patterns of population connectivity from central to peripheral populations of C. cuning along the Kuroshio Current. Results: Principal component and cluster analyses indicated a genetically distinct lineage at the periphery of the C. cuning species range and examination of SNPs putatively under divergent selection suggested potential for local adaptation in this region. We found signatures of isolation‐by‐distance and significant genetic differences between nearly all sites. Sites closest to the periphery exhibited increased within‐population relatedness and decreased effective population size. Main Conclusions: Despite the potential for homogenizing gene flow along the Kuroshio Current, peripheral populations in C. cuning conform to the predictions of the CCPM. While oceanography, habitat availability, and dispersal ability are all likely to shape the patterns found in C. cuning across this central‐peripheral junction, the impacts of genetic drift and natural selection in increasing smaller peripheral populations appear to be probable influences on the lineage divergence found in the Ryukyu Islands

    Effects of Land Crabs on Leaf Litter Distributions and Accumulations in a Mainland Tropical Rain Forest 1

    Full text link
    The effect of the fossorial land crab Gecarcinus quadratus (Gecarcinidae) on patterns of accumulation and distribution of leaf litter was studied for two years in the coastal primary forests of Costa Rica's Corcovado National Park. Within this mainland forest, G, quadratus achieve densities up to 6 crabs/m 2 in populations extending along the Park's Pacific coastline and inland for ca 600 m. Crabs selectively forage for fallen leaf litter and relocate what they collect to burrow chambers that extend from 15 to 150 cm deep ( N = 44), averaging (±SE) 48.9 ± 3.0 cm. Preference trials suggested that leaf choice by crabs may be species-specific. Excavated crab burrows revealed maximum leaf collections of 11.75 g dry mass– 2.5 times more leaf litter than collected by square-meter leaf fall traps over several seven-day sampling periods. Additionally, experimental crab exclosures (25 m 2 ) were established using a repeated measures randomized block design to test for changes in leaf litter as a function of reduced crab density. Exclosures accumulated significantly more (5.6 ± 3.9 times) leaf litter than did control treatments during the wet, but not the dry, seasons over this two-year study. Such extensive litter relocation by land crabs may affect profiles of soil organic carbon, rooting, and seedling distributions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73250/1/j.1744-7429.2003.tb00590.x.pd
    • 

    corecore