9,885 research outputs found
X-Ray Tomography To Measure Size Of Fragments From Penetration Of High-Velocity Tungsten Rods
Behind-armor debris that results from tungsten rods penetrating armor steel at 2 km/s was studied by analysis of recovered fragments. Fragment recovery was by means of particle board. Individual fragments were analyzed by x-ray tomography, which provides information for fragment identification, mass, shape, and penetration down to masses of a few milligrams. The experiments were complemented by AUTODYN and EPIC calculations. Fragments were steel or tungsten generated from the channel or from the breakout through the target rear surface. Channel fragment motions were well described by Tate theory. Breakout fragments had velocities from the projectile remnant to the channel velocity, apparently depending on where in the projectile a fragment originated. The fragment size distribution was extremely broad and did not correlate well with simple uniform-fragment-size models.Mechanical Engineerin
Probing Micro-quasars with TeV Neutrinos
The jets associated with Galactic micro-quasars are believed to be ejected by
accreting stellar mass black-holes or neutron stars. We show that if the energy
content of the jets in the transient sources is dominated by electron-proton
plasma, then a several hour outburst of 1--100 TeV neutrinos produced by photo-
meson interactions should precede the radio flares associated with major
ejection events. Several neutrinos may be detected during a single outburst by
a 1km^2 detector, thereby providing a powerful probe of micro-quasars jet
physics.Comment: Accepted to PRL. More detailed discussion of particle acceleratio
Recommended from our members
Design, characterization, and fabrication of solar-retroreflective cool-wall materials
Raising urban albedo increases the fraction of incident sunlight returned to outer space, cooling cities and their buildings. We evaluated the angular distribution of solar radiation incident on exterior walls in 17 U S. climates to develop performance parameters for solar-retroreflective walls, then applied first-principle physics and ray-tracing simulations to explore designs. Our analysis indicates that retroreflective walls must function at large incidence angles to reflect a substantial portion of summer sunlight, and that this will be difficult to attain with materials that rely on total internal reflection. Gonio-spectrophotometer measurements of the solar spectral bi-directional reflectivity of a bicycle reflector showed little to no retroreflection at large incidence angles. Visual comparisons of retroreflection to specular first-surface reflection for four different retroreflective safety films using violet and green lasers suggest their retroreflection to be no greater than 0.09 at incidence angles up to 45°, and no greater than 0.30 at incidence angles of up to 70°. Attempts to produce a two-surface retroreflector with orthogonal mirror grooves by cutting and polishing an aluminum block indicate that residual surface roughness impedes retroreflection. Ongoing efforts focus on forming orthogonal surfaces with aluminized Mylar film, a material with very high specular reflectance across the solar spectrum. We investigated (1) folding or stamping a free film; (2) adhering the film to a pre-shaped substrate; or (3) attaching the film to a flat ductile substrate, then shaping. The latter two methods were more successful but yielded imperfect right angles
Extrapolation of K to \pi\pi decay amplitude
We examine the uncertainties involved in the off-mass-shell extrapolation of
the decay amplitude with emphasis on those aspects that
have so far been overlooked or ignored. Among them are initial-state
interactions, choice of the extrapolated kaon field, and the relation between
the asymptotic behavior and the zeros of the decay amplitude. In the inelastic
region the phase of the decay amplitude cannot be determined by strong
interaction alone and even its asymptotic value cannot be deduced from
experiment. More a fundamental issue is intrinsic nonuniqueness of off-shell
values of hadronic matrix elements in general. Though we are hampered with
complexity of intermediate-energy meson interactions, we attempt to obtain a
quantitative idea of the uncertainties due to the inelastic region and find
that they can be much larger than more optimistic views portray.Comment: 16 pages with 5 eps figures in REVTE
Carbide coated fibers in graphite-aluminum composites
The NASA-supported program at the Los Alamos Scientific Laboratory (LASL) to develop carbon fiber-aluminum matrix composites is described. Chemical vapor deposition (CVD) was used to uniformly deposit thin, smooth, continuous coats of TiC on the fibers of graphite tows. Wet chemical coating of fibers, followed by high-temperature treatment, was also used, but showed little promise as an alternative coating method. Strength measurements on CVD coated fiber tows showed that thin carbide coats can add to fiber strength. The ability of aluminum alloys to wet TiC was successfully demonstrated using TiC-coated graphite surfaces. Pressure-infiltration of TiC- and ZrC-coated fiber tows with aluminum alloys was only partially successful. Experiments were performed to evaluate the effectiveness of carbide coats on carbon as barriers to prevent reaction between alluminum alloys and carbon. Initial results indicate that composites of aluminum and carbide-coated graphite are stable for long periods of time at temperatures near the alloy solidus
Carbide coated fibers in graphites-aluminum composites
Research activities are described for a NASA-supported program at the Los Alamos Scientific Laboratory to develop graphite fiber-aluminum matrix composites. A chemical vapor deposition apparatus was constructed for continuously coating graphite fibers with TiC. As much as 150 meters of continuously coated fibers were produced. Deposition temperatures were varied from 1365 K to about 1750 K, and deposition time from 6 to 150 seconds. The 6 sec deposition time corresponded to a fiber feed rate of 2.54 m/min through the coater. Thin, uniform, adherent TiC coats, with thicknesses up to approximately 0.1 micrometer were produced on the individual fibers of Thornel 50 graphite yarns without affecting fiber strength. Although coat properties were fairly uniform throughout a given batch, more work is needed to improve the batch-to-batch reproducibility. Samples of TiC-coated Thornel 50 fibers were infiltrated with an aluminum alloy and hot-pressed in vacuum to produce small composite bars for flexure testing. Strengths as high as 90% of the rule-of-mixtures strength were achieved. Results of the examination of the fracture surfaces indicate that the bonding between the aluminum and the TiC-coated fibers is better than that achieved in a similar, commercially infiltrated material made with fibers having no observable surface coats. Several samples of Al-infiltrated, TiC-coated Thornel 50 graphite yarns, together with samples of the commercially infiltrated, uncoated fibers, were heated for 100 hours at temperatures near the alloy solidus. The TiC-coated samples appear to undergo less reaction than do the uncoated samples. Photomicrographs are shown
Carbide coated fibers in graphite-aluminum composites
The study of protective-coupling layers of refractory metal carbides on the graphite fibers prior to their incorporation into composites is presented. Such layers should be directly wettable by liquid aluminum and should act as diffusion barriers to prevent the formation of aluminum carbide. Chemical vapor deposition was used to uniformly deposit thin, smooth, continuous coats of ZrC on the carbon fibers of tows derived from both rayon and polyacrylonitrile. A wet chemical coating of the fibers, followed by high-temperature treatment, was used, and showed promise as an alternative coating method. Experiments were performed to demonstrate the ability of aluminum alloys to wet carbide surfaces. Titanium carbide, zirconium carbide and carbide-coated graphite surfaces were successfully wetted. Results indicate that initial attempts to wet surfaces of ZrC-coated carbon fibers appear successful
Scattering by a contact potential in three and lower dimensions
We consider the scattering of nonrelativistic particles in three dimensions
by a contact potential which is defined
as the limit of . It is
surprising that it gives a nonvanishing cross section when and
. When the contact potential is approached by a spherical square
well potential instead of the above spherical shell one, one obtains basically
the same result except that the parameter that gives a nonvanishing
cross section is different. Similar problems in two and one dimensions are
studied and results of the same nature are obtained.Comment: REVTeX, 9 pages, no figur
Students' Forms of Dialogue When Engaged with Contemporary Biological Research: Insights from University and High School Students' Group Discussions
Classroom dialogues have special educational value because they allow students to engage critically but constructively with each other’s ideas, solve scientific problems jointly and develop their scientific understanding. The present study focuses on how groups of twelfth-grade high school and university students communicate and co-operate through dialogue to solve a biological problem they have not encountered before. The specific research questions are as follows: (a) What are the dialogic structures that help students construct scientific explanations? (b) How does prior scientific knowledge support student dialogue in constructing explanations? A coding scheme was developed inductively for the analysis of participants’ utterances. We use illustrative exemplars from participants’ dialogues to discuss those aspects which might support explanatory reasoning. We focus on reasoned attention for contending opinions and striving for consensus that characterise cases of constructive dialogue. We also discuss observed objections and disagreements as triggering factors for constructive alternative explanations. Finally, we discuss the evidence showing that while prior knowledge supports student reasoning it can also hinder the ability of students to think in a creative way
Classical properties of low-dimensional conductors: Giant capacitance and non-Ohmic potential drop
Electrical field arising around an inhomogeneous conductor when an electrical
current passes through it is not screened, as distinct from 3D conductors, in
low-dimensional conductors. As a result, the electrical field depends on the
global distribution of the conductivity sigma(x) rather than on the local value
of it, inhomogeneities of sigma(x) produce giant capacitances C(omega) that
show frequency dependence at relatively low omega, and electrical fields
develop in vast regions around the inhomogeneities of sigma(x). A theory of
these phenomena is presented for 2D conductors.Comment: 5 pages, two-column REVTeX, to be published in Physical Review
Letter
- …