6 research outputs found

    The El Niño event of 2015-16: climate anomalies and their impact on groundwater resources in East and Southern Africa

    Get PDF
    The impact of climate variability on groundwater storage has received limited attention despite widespread dependence on groundwater as a resource for drinking water, agriculture and industry. Here, we assess the climate anomalies that occurred over Southern Africa (SA) and East Africa, south of the equator (EASE), during the major El Niño event of 2015-16, and their associated impacts on groundwater storage, across scales, through analysis of in situ groundwater piezometry and GRACE satellite data. At the continental scale, the El Niño of 2015-16 was associated with a pronounced dipole of opposing rainfall anomalies over EASE and Southern Africa, north/south of ~120S, a characteristic pattern of ENSO. Over Southern Africa the most intense drought event in the historical record occurred, based on an analysis of the cross-scale areal intensity of surface water balance anomalies (as represented by the Standardised Precipitation-Evapotranspiration Index, SPEI), with an estimated return period of at least 200 years and a best estimate of 260 years. Climate risks are changing and we estimate that anthropogenic warming only (ignoring changes to other climate variables e.g. 43 precipitation) has approximately doubled the risk of such an extreme SPEI drought event. These surface water balance deficits suppressed groundwater recharge, leading to a substantial groundwater storage decline indicated by both GRACE satellite and piezometric data in the 46 Limpopo basin. Conversely, over EASE during the 2015-16 El Niño event, anomalously wet conditions were observed with an estimated return period of ~10 years, likely moderated by the absence of a strongly positive Indian Ocean Zonal Mode phase. The strong but not extreme rainy season increased groundwater storage as shown by satellite GRACE data and rising groundwater levels observed at a site in central Tanzania. We note substantial uncertainties in separating groundwater from total water storage in GRACE data and show that consistency between GRACE and piezometric estimates of groundwater storage is apparent when spatial averaging scales are comparable. These results have implications for sustainable and climate-resilient groundwater resource management, including the potential for adaptive strategies, such as managed aquifer recharge during episodic recharge events

    Determination of chloromethane and dichloromethane in a tropical terrestrial mangrove forest in Brazil by measurements and modelling

    No full text
    Chloromethane (CH3Cl) and dichloromethane (CH2Cl2) are known to have both natural and anthropogenic sources to the atmosphere. From recent studies it is known that tropical and sub tropical plants are primary sources of CH3Cl in the atmosphere. In order to quantify the biogenic emissions of CH3Cl and CH2Cl2 from mangroves, field measurement were conducted in a tropical mangrove forest on the coast of Brazil. To the best of our knowledge these field measurements were the first of its kind conducted in the tropical mangrove ecosystem of Braganca. A mesoscale atmospheric model, MEsoscale TRAnsport and fluid (Stream) model (METRAS), was used to simulate passive tracers concentrations and to study the dependency of concentrations on type of emission function and meteorology. Model simulated concentrations were normalized using the observed field data. With the help of the mesoscale model results and the observed data the mangrove emissions were estimated at the local scale. By using this bottom-up approach the global emissions of CH3Cl and CH2Cl2 from mangroves were quantified. The emission range obtained with different emission functions and different meteorology are 4–7 Gg yr−1 for CH3Cl and 1–2 Gg yr2 for CH2Cl2. Based on the present study the mangroves contribute 0.3 percent of CH2Cl2 and 0.2 percent of CH3Cl in the global emission budget. This study corroborates the study by Manley et al. (2007) which estimated that mangroves produce 0.3 percent of CH3Cl in the global emission budget. Although they contribute a small percentage in the global budget, their long lifetime enables them to contribute to the destruction of ozone in the stratosphere. From the detailed analyses of the model results it can be concluded that meteorology has a larger influence on the variability of concentrations than the temporal variability of the emission function
    corecore