3,730 research outputs found

    Ion Temperatures in the Low Solar Corona: Polar Coronal Holes at Solar Minimum

    Full text link
    In the present work we use a deep-exposure spectrum taken by the SUMER spectrometer in a polar coronal hole in 1996 to measure the ion temperatures of a large number of ions at many different heights above the limb between 0.03 and 0.17 solar radii. We find that the measured ion temperatures are almost always larger than the electron temperatures and exhibit a non-monotonic dependence on the charge-to-mass ratio. We use these measurements to provide empirical constraints to a theoretical model of ion heating and acceleration based on gradually replenished ion-cyclotron waves. We compare the wave power required to heat the ions to the observed levels to a prediction based on a model of anisotropic magnetohydrodynamic turbulence. We find that the empirical heating model and the turbulent cascade model agree with one another, and explain the measured ion temperatures, for charge-to-mass ratios smaller than about 0.25. However, ions with charge-to-mass ratios exceeding 0.25 disagree with the model; the wave power they require to be heated to the measured ion temperatures shows an increase with charge-to-mass ratio (i.e., with increasing frequency) that cannot be explained by a traditional cascade model. We discuss possible additional processes that might be responsible for the inferred surplus of wave power.Comment: 11 pages (emulateapj style), 10 figures, ApJ, in press (v. 691, January 20, 2009

    New views of the solar wind with the Lambert W function

    Full text link
    This paper presents closed-form analytic solutions to two illustrative problems in solar physics that have been considered not solvable in this way previously. Both the outflow speed and the mass loss rate of the solar wind of plasma particles ejected by the Sun are derived analytically for certain illustrative approximations. The calculated radial dependence of the flow speed applies to both Parker's isothermal solar wind equation and Bondi's equation of spherical accretion. These problems involve the solution of transcendental equations containing products of variables and their logarithms. Such equations appear in many fields of physics and are solvable by use of the Lambert W function, which is briefly described. This paper is an example of how new functions can be applied to existing problems.Comment: 16 pages (revtex4), 3 figures, American J. Phys., in press (2004

    Improved Constraints on the Preferential Heating and Acceleration of Oxygen Ions in the Extended Solar Corona

    Full text link
    We present a detailed analysis of oxygen ion velocity distributions in the extended solar corona, based on observations made with the Ultraviolet Coronagraph Spectrometer (UVCS) on the SOHO spacecraft. Polar coronal holes at solar minimum are known to exhibit broad line widths and unusual intensity ratios of the O VI 1032, 1037 emission line doublet. The traditional interpretation of these features has been that oxygen ions have a strong temperature anisotropy, with the temperature perpendicular to the magnetic field being much larger than the temperature parallel to the field. However, recent work by Raouafi and Solanki suggested that it may be possible to model the observations using an isotropic velocity distribution. In this paper we analyze an expanded data set to show that the original interpretation of an anisotropic distribution is the only one that is fully consistent with the observations. It is necessary to search the full range of ion plasma parameters to determine the values with the highest probability of agreement with the UVCS data. The derived ion outflow speeds and perpendicular kinetic temperatures are consistent with earlier results, and there continues to be strong evidence for preferential ion heating and acceleration with respect to hydrogen. At heliocentric heights above 2.1 solar radii, every UVCS data point is more consistent with an anisotropic distribution than with an isotropic distribution. At heights above 3 solar radii, the exact probability of isotropy depends on the electron density chosen to simulate the line-of-sight distribution of O VI emissivity. (abridged abstract)Comment: 19 pages (emulateapj style), 13 figures, ApJ, in press (v. 679; May 20, 2008

    Hydrodynamical Simulations of Corotating Interaction Regions and Discrete Absorption Components in Rotating O-Star Winds

    Get PDF
    We present two-dimensional hydrodynamical simulations of corotating stream structure in the wind from a rotating O star, together with resulting synthetic line profiles showing discrete absorption components (DACs). An azimuthal variation is induced by a local increase or decrease in the radiative driving force, as would arise from a bright or dark ``star spot'' in the equatorial plane. Since much of the emergent wind structure seems independent of the exact method of perturbation, we expect similar morphology in winds perturbed by localized magnetic fields or nonradial pulsations, as well as by either rotationally-modulated structure or transient mass ejections. We find that bright spots with enhanced driving generate high-density, low-speed streams, while dark spots generate low-density, high-speed streams. Corotating interaction regions (CIRs) form where fast material collides with slow material -- e.g. at the leading (trailing) edge of a stream from a dark (bright) spot, often steepening into shocks. The unperturbed supersonic wind obliquely impacts the high-density CIR and sends back a nonlinear signal which takes the form of a sharp propagating discontinuity (``kink'' or ``plateau'') in the radial velocity gradient. These features travel inward in the co-moving frame at the radiative-acoustic characteristic speed, and thus slowly outward in the star's frame. We find that these slow kinks, rather than the CIRs themselves, are more likely to result in high-opacity DACs in the absorption troughs of unsaturated P Cygni line profiles.Comment: Submitted to Ap. J., 8-1-95. 20 pages of LaTeX text, using AASTeX 4.0 macros. Postscript figures available on WWW, along with postscript version of paper, at http://www.bartol.udel.edu/~cranmer/hot_pre.htm
    • …
    corecore