29,546 research outputs found

    Modelling Citation Networks

    Full text link
    The distribution of the number of academic publications as a function of citation count for a given year is remarkably similar from year to year. We measure this similarity as a width of the distribution and find it to be approximately constant from year to year. We show that simple citation models fail to capture this behaviour. We then provide a simple three parameter citation network model using a mixture of local and global search processes which can reproduce the correct distribution over time. We use the citation network of papers from the hep-th section of arXiv to test our model. For this data, around 20% of citations use global information to reference recently published papers, while the remaining 80% are found using local searches. We note that this is consistent with other studies though our motivation is very different from previous work. Finally, we also find that the fluctuations in the size of an academic publication's bibliography is important for the model. This is not addressed in most models and needs further work.Comment: 29 pages, 22 figure

    Global and Regional Sources of Risk in Equity Markets: Evidence from Factor Models with Time-Varying Conditional Skewness

    Get PDF
    We examine the influence of global and regional factors on the conditional distribution of stock returns from six Asian markets, using factor models in which unexpected returns comprise global, regional and local shocks. The models allow for conditional heteroskedasticity and time-varying conditional skewness, and permit mean, variance and skewness spillovers to be measured. We find that the pattern of spillovers changed in the late 1990s. When spillovers are allowed to vary with the type of news arriving in a market, we find that local news reduces mean spillovers but increases variance spillovers. News about regional countries increases skewness spilloversAsymmetries, Skewness, Volatility, Spillover, Stock returns, News.

    Global and Regional Sources of Risk in Equity Markets: Evidence from Factor Models with Time-Varying Conditional Skewness

    Get PDF
    This study examines the influence of global and regional factors on the conditional distribution of stock returns from six Asian markets, using factor models in which unexpected returns comprise global, regional and local shocks. Besides conditional heteroskedasticity, the models allow shocks to have time-varying conditional skewness. The global factor appears less important for market volatility in models that permit time-varying conditional skewness. The influence of regional and global factors on risk is small in most of the markets, except in the late 1990s during which the regional factor accounted for a substantial portion of negative skewness in the markets' returns distribution.Asymmetries, Skewness, Volatility, Spillover, Stock returns

    On the Superradiance of Spin-1 Waves in an Equatorial Wedge around a Kerr Hole

    Get PDF
    Recently Van Putten has suggested that superradiance of magnetosonic waves in a toroidal magnetosphere around a Kerr black hole may play a role in the central engine of gamma-ray bursts. In this context, he computed (in the WKB approximation) the superradiant amplification of scalar waves confined to a thin equatorial wedge around a Kerr hole and found that the superradiance is higher than for radiation incident over all angles. This paper presents calculations of both spin-0 (scalar) superradiance (integrating the radial equation rather than using the WKB method) and and spin-1 (electromagnetic/magnetosonic) superradiance, in Van Putten's wedge geometry. In contrast to the scalar case, spin-1 superradiance decreases in the wedge geometry, decreasing the likelihood of its astrophysical importance.Comment: Submitted to The Astrophysical Journal Letter

    Electric-field multiplexing/demultiplexing of volume holograms in photorefractive media

    Get PDF
    We propose a new method of volume hologram multiplexing/demultiplexing in noncentrosymmetric media. Volume holograms may be multiplexed by tuning the material parameters of the recording medium (such as refractive index or lattice parameters) while keeping the external parameters (wavelength and angles) fixed. For example, an external dc electric field alters the index of refraction through the electro-optic effect, effectively changing the recording and reconstruction wavelengths in the storage medium. Then the storage of holograms at different fields, hence different indices of refraction, is closely related to wavelength multiplexing. We demonstrate this concept in a preliminary experiment by electrically multiplexing two volume holograms in a strontium barium niobate crystal

    Malmquist Bias and the Distance to the Virgo Cluster

    Full text link
    This paper investigates the impact of Malmquist bias on the distance to the Virgo cluster determined by the H_0 Key Project using M100, and consequently on the derived value of H_0. Malmquist bias is a volume-induced statistical effect which causes the most probable distance to be different from the raw distance measured. Consideration of the bias in the distance to the Virgo cluster raises this distance and lowers the calculated value of H_0. Monte Carlo simulations of the cluster have been run for several possible distributions of spirals within the cluster and of clusters in the local universe. Simulations consistent with known information regarding the cluster and the errors of measurement result in a bias of about 6.5%-8.5%. This corresponds to an unbiased distance of 17.2-17.4 Mpc and a value of H_0 in the range 80-82 km/s/Mpc. The problem of determining the bias to Virgo illustrates several key points regarding Malmquist bias. Essentially all conventional astronomical distance measurements are subject to this bias. In addition, the bias accumulates when an attempt is made to construct "distance ladders" from measurements which are individually biased. As will be shown in the case of Virgo, the magnitude and direction of the bias are sensitive to the spatial distribution of the parent poputation from which the observed object is drawn - a distribution which is often poorly known. This leads to uncertainty in the magnitude of the bias, and adds to the importance of minimizing the number of steps in "distance ladders".Comment: 19 pages, 3 figures, Latex, To appear in Ap

    Parallelization of a Six Degree of Freedom Entry Vehicle Trajectory Simulation Using OpenMP and OpenACC

    Get PDF
    The art and science of writing parallelized software, using methods such as Open Multi-Processing (OpenMP) and Open Accelerators (OpenACC), is dominated by computer scientists. Engineers and non-computer scientists looking to apply these techniques to their project applications face a steep learning curve, especially when looking to adapt their original single threaded software to run multi-threaded on graphics processing units (GPUs). There are significant changes in mindset that must occur; such as how to manage memory, the organization of instructions, and the use of if statements (also known as branching). The purpose of this work is twofold: 1) to demonstrate the applicability of parallelized coding methodologies, OpenMP and OpenACC, to tasks outside of the typical large scale matrix mathematics; and 2) to discuss, from an engineers perspective, the lessons learned from parallelizing software using these computer science techniques. This work applies OpenMP, on both multi-core central processing units (CPUs) and Intel Xeon Phi 7210, and OpenACC on GPUs. These parallelization techniques are used to tackle the simulation of thousands of entry vehicle trajectories through the integration of six degree of freedom (DoF) equations of motion (EoM). The forces and moments acting on the entry vehicle, and used by the EoM, are estimated using multiple models of varying levels of complexity. Several benchmark comparisons are made on the execution of six DoF trajectory simulation: single thread Intel Xeon E5-2670 CPU, multi-thread CPU using OpenMP, multi-thread Xeon Phi 7210 using OpenMP, and multi-thread NVIDIA Tesla K40 GPU using OpenACC. These benchmarks are run on the Pleiades Supercomputer Cluster at the National Aeronautics and Space Administration (NASA) Ames Research Center (ARC), and a Xeon Phi 7210 node at NASA Langley Research Center (LaRC)

    Dominant gain-of-function mutations in Hsp104p reveal crucial roles for the middle region

    Get PDF
    Heat-shock protein 104 (Hsp104p) is a protein-remodeling factor that promotes survival after extreme stress by disassembling aggregated proteins and can either promote or prevent the propagation of prions (protein-based genetic elements). Hsp104p can be greatly overexpressed without slowing growth, suggesting tight control of its powerful protein-remodeling activities. We isolated point mutations in Hsp104p that interfere with this control and block cell growth. Each mutant contained alterations in the middle region (MR). Each of the three MR point mutations analyzed in detail had distinct phenotypes. In combination with nucleotide binding site mutations, Hsp104p(T499I) altered bud morphology and caused septin mislocalization, colocalizing with the misplaced septins. Point mutations in the septin Cdc12p suppressed this phenotype, suggesting that it is due to direct Hsp104pā€“septin interactions. Hsp104p(A503V) did not perturb morphology but stopped cell growth. Remarkably, when expressed transiently, the mutant protein promoted survival after extreme stress as effectively as did wild-type Hsp104p. Hsp104p(A509D) had no deleterious effects on growth or morphology but had a greatly reduced ability to promote thermotolerance. That mutations in an 11-amino acid stretch of the MR have such profound and diverse effects suggests the MR plays a central role in regulating Hsp104p function

    Photo-response of the conductivity in functionalized pentacene compounds

    Full text link
    We report the first investigation of the photo-response of the conductivity of a new class of organic semiconductors based on functionalized pentacene. These materials form high quality single crystals that exhibit a thermally activated resistivity. Unlike pure pentacene, the functionalized derivatives are readily soluble in acetone, and can be evaporated or spin-cast as thin films for potential device applications. The electrical conductivity of the single crystal materials is noticeably sensitive to ambient light changes. The purpose, therefore, of the present study, is to determine the nature of the photo-response in terms of carrier activation vs. heating effects, and also to measure the dependence of the photo-response on photon energy. We describe a new method, involving the temperature dependent photo-response, which allows an unambiguous identification of the signature of heating effects in materials with a thermally activated conductivity. We find strong evidence that the photo-response in the materials investigated is predominantly a highly localized heating mechanism. Wavelength dependent studies of the photo-response reveal resonant features and cut-offs that indicate the photon energy absorption is related to the electronic structure of the material.Comment: Preprint: 18 pages total,7 figure
    • ā€¦
    corecore