18 research outputs found

    Differential remodelling of mitochondrial subpopulations and mitochondrial dysfunction are a feature of early stage diabetes

    Get PDF
    AbstractMitochondrial dysfunction is a feature of type I and type II diabetes, but there is a lack of consistency between reports and links to disease development. We aimed to investigate if mitochondrial structure–function remodelling occurs in the early stages of diabetes by employing a mouse model (GENA348) of Maturity Onset Diabetes in the Young, exhibiting hyperglycemia, but not hyperinsulinemia, with mild left ventricular dysfunction. Employing 3-D electron microscopy (SBF-SEM) we determined that compared to wild-type, WT, the GENA348 subsarcolemma mitochondria (SSM) are ~ 2-fold larger, consistent with up-regulation of fusion proteins Mfn1, Mfn2 and Opa1. Further, in comparison, GENA348 mitochondria are more irregular in shape, have more tubular projections with SSM projections being longer and wider. Mitochondrial density is also increased in the GENA348 myocardium consistent with up-regulation of PGC1-α and stalled mitophagy (down-regulation of PINK1, Parkin and Miro1). GENA348 mitochondria have more irregular cristae arrangements but cristae dimensions and density are similar to WT. GENA348 Complex activity (I, II, IV, V) activity is decreased but the OCR is increased, potentially linked to a shift towards fatty acid oxidation due to impaired glycolysis. These novel data reveal that dysregulated mitochondrial morphology, dynamics and function develop in the early stages of diabetes.</jats:p

    Calcium Extrusion Pump PMCA4: A New Player in Renal Calcium Handling?

    Get PDF
    Calcium (Ca2+) is vital for multiple processes in the body, and maintenance of the electrolyte concentration is required for everyday physiological function. In the kidney, and more specifically, in the late distal convoluted tubule and connecting tubule, the fine-tuning of Ca2+ reabsorption from the pro-urine takes place. Here, Ca2+ enters the epithelial cell via the transient receptor potential vanilloid receptor type 5 (TRPV5) channel, diffuses to the basolateral side bound to calbindin-D28k and is extruded to the blood compartment via the Na+/Ca2+ exchanger 1 (NCX1) and the plasma membrane Ca2+ ATPase (PMCA). Traditionally, PMCA1 was considered to be the primary Ca2+ pump in this process. However, in recent studies TRPV5-expressing tubules were shown to highly express PMCA4. Therefore, PMCA4 may have a predominant role in renal Ca2+ handling. This study aimed to elucidate the role of PMCA4 in Ca2+ homeostasis by characterizing the Ca2+ balance, and renal and duodenal Ca2+-related gene expression in PMCA4 knockout mice. The daily water intake of PMCA4 knockout mice was significantly lower compared to wild type littermates. There was no significant difference in serum Ca2+ level or urinary Ca2+ excretion between groups. In addition, renal and duodenal mRNA expression levels of Ca2+-related genes, including TRPV5, TRPV6, calbindin-D28k, calbindin-D9k, NCX1 and PMCA1 were similar in wild type and knockout mice. Serum FGF23 levels were significantly increased in PMCA4 knockout mice. In conclusion, PMCA4 has no discernible role in normal renal Ca2+ handling as no urinary Ca2+ wasting was observed. Further investigation of the exact role of PMCA4 in the distal convoluted tubule and connecting tubule is required

    Smad3 Couples Pak1 With the Antihypertrophic Pathway Through the E3 Ubiquitin Ligase, Fbxo32.

    No full text
    Pathological cardiac hypertrophy is regarded as a critical intermediate step toward the development of heart failure. Many signal transduction cascades are demonstrated to dictate the induction and progression of pathological hypertrophy; however, our understanding in regulatory mechanisms responsible for the suppression of hypertrophy remains limited. In this study, we showed that exacerbated hypertrophy induced by pressure overload in cardiac-deleted Pak1 mice was attributable to a failure to upregulate the antihypertrophic E3 ligase, Fbxo32, responsible for targeting proteins for the ubiquitin-degradation pathway. Under pressure overload, cardiac overexpression of constitutively active Pak1 mice manifested strong resilience against pathological hypertrophic remodeling. Mechanistic studies demonstrated that subsequent to Pak1 activation, the binding of Smad3 on a critical singular AGAC(-286)-binding site on the FBXO32 promoter was crucial for its transcriptional regulation. Pharmacological upregulation of Fbxo32 by Berberine ameliorated hypertrophic remodeling and improved cardiac performance in cardiac-deficient Pak1 mice under pressure overload. Our findings discover Smad3 and Fbxo32 as novel downstream components of the Pak1-dependent signaling pathway for the suppression of hypertrophy. This discovery opens a new venue for opportunities to identify novel targets for the management of cardiac hypertrophy

    The cardiovascular phenotype of a mouse model of acromegaly.

    No full text
    BACKGROUND: Although, it is accepted that there is an excess of cardiovascular mortality in acromegaly, it is uncertain whether this is due to the direct effects of growth hormone-induced-cardiomyopathy or is a consequence of atherosclerosis secondary to the metabolic syndrome often observed in this condition. Direct comparison of a mouse model of acromegaly to a mouse model of Laron's syndrome allowed us to carry out detailed phenotyping and better understand the role GH plays in the circulatory system. METHODS AND RESULTS: Transgenic mice that overexpress the growth hormone gene (GH) developed gigantism, including insulin resistance and higher blood pressures commensurate with increased body mass. In these giant mice, the hearts were hypertrophied but haemodynamic studies suggested contractile function was normal. Segments of small arteries mounted in a pressure myograph showed vascular wall hypertrophy but a preserved lumen diameter. Vascular contractile function was normal. Mice in which the GH receptor gene was disrupted or 'knocked out' were dwarf and had low blood pressure, small hearts and blood vessels but a normally functioning circulation. Correlations of body mass with cardiovascular parameters suggested that blood pressure and structural characteristics develop in line with body size. CONCLUSION: In this transgenic mouse model of acromegaly, there is cardiac and vascular hypertrophy commensurate with GH excess but normal function. Our findings support the contention that the excess mortality in this condition may be due to the development of hypertrophic cardiomyopathy rather than increased rates of atherosclerotic coronary artery disease

    The Plasma Membrane Calcium ATPase 4 Signaling in Cardiac Fibroblasts Mediates Cardiomyocyte Hypertrophy

    Get PDF
    The heart responds to pathological overload through myocyte hypertrophy. Here we show that this response is regulated by cardiac fibroblasts via a paracrine mechanism involving plasma membrane calcium ATPase 4 (PMCA4). Pmca4 deletion in mice, both systemically and specifically in fibroblasts, reduces the hypertrophic response to pressure overload; however, knocking out Pmca4 specifically in cardiomyocytes does not produce this effect. Mechanistically, cardiac fibroblasts lacking PMCA4 produce higher levels of secreted frizzled related protein 2 (sFRP2), which inhibits the hypertrophic response in neighbouring cardiomyocytes. Furthermore, we show that treatment with the PMCA4 inhibitor aurintricarboxylic acid (ATA) inhibits and reverses cardiac hypertrophy induced by pressure overload in mice. Our results reveal that PMCA4 regulates the development of cardiac hypertrophy and provide proof of principle for a therapeutic approach to treat this condition
    corecore