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The plasma membrane calcium ATPase 4 signalling
in cardiac fibroblasts mediates cardiomyocyte
hypertrophy
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Florence Baudoin-Stanley1, Xin Wang4, Ludwig Neyses1,**, Elizabeth J. Cartwright1,** & Delvac Oceandy1,**

The heart responds to pathological overload through myocyte hypertrophy. Here we show

that this response is regulated by cardiac fibroblasts via a paracrine mechanism involving

plasma membrane calcium ATPase 4 (PMCA4). Pmca4 deletion in mice, both systemically

and specifically in fibroblasts, reduces the hypertrophic response to pressure overload;

however, knocking out Pmca4 specifically in cardiomyocytes does not produce this effect.

Mechanistically, cardiac fibroblasts lacking PMCA4 produce higher levels of secreted frizzled

related protein 2 (sFRP2), which inhibits the hypertrophic response in neighbouring cardio-

myocytes. Furthermore, we show that treatment with the PMCA4 inhibitor aurintricarboxylic

acid (ATA) inhibits and reverses cardiac hypertrophy induced by pressure overload in mice.

Our results reveal that PMCA4 regulates the development of cardiac hypertrophy and

provide proof of principle for a therapeutic approach to treat this condition.
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C
ardiac overload due to high blood pressure, myocardial
infarction, aortic stenosis and myofilament or cytoskeletal
mutations leads to pathological hypertrophy and

eventually heart failure1–3. Controlling hypertrophic growth is
important, as it significantly reduces the risk of developing heart
failure and sudden death4. Several treatment modalities are
commonly used to control the extra-cardiac factors that may
contribute to hypertrophic growth, notably blood pressure5;
however, no treatment has directly targeted the intra-cardiac
factors. Therefore, the investigation of the intra-cardiac
mechanisms governing hypertrophic growth is pivotal for
developing novel pathophysiologial and therapeutic concepts.

Cardiac fibroblasts have recently emerged as one of the main
factors in the regulation of various pathological processes in the
heart. Cardiac fibroblasts play key roles in maintaining
extracellular matrix homeostasis (reviewed in ref. 6). These cells
are commonly understood to be heavily involved in the
development of myocardial fibrosis through cell proliferation
and secretion of extracellular matrix. However, recent knowledge
suggests that cardiac fibroblasts are actively involved in the
regulation of a number of signalling pathways in the heart,
including those implicated in cardiac hypertrophy and
remodelling6. These cells interact with cardiomyocytes via
paracrine mechanisms and/or direct cell–cell interactions7.
Examples of factors secreted by cardiac fibroblasts that may
mediate cardiomyocyte hypertrophy include growth factors (for
example, insulin-like growth factor 1 (IGF1))8 and microRNAs9.

Calcium is an important signal transducer and is essential in
the regulation of key cellular processes such as growth, survival
and gene expression10. Although regulation of the calcium signals
in cardiomyocytes is well studied, the calcium signalling
mechanism in cardiac fibroblasts is relatively unknown. A
recent study has indicated that regulation of intracellular
calcium might influence cardiac fibroblasts proliferation rate
and hence the development of fibrosis11; however, it is not known
whether intracellular calcium in fibroblasts mediates cardiac
hypertrophy.

Here we show that the plasma membrane calcium ATPase
isoform 4 (PMCA4) regulates the calcium signal in cardiac
fibroblasts, which is important in the regulation of cardiac
hypertrophy. Genetic ablation and pharmacological inhibition of
PMCA4 enhances the production of secreted frizzled related
protein 2 (sFRP2) by cardiac fibroblasts. sFRP2 is a potent
inhibitor of the Wnt pathway and has been described as having
potent protective effects against myocardial injury12. We also
show that targeting PMCA4 by a novel inhibitor is beneficial to
the progression of cardiac hypertrophy probably through
potentiation of sFRP2 production.

Results
sFRP2 expression is elevated in PMCA4� /� cardiac fibroblasts.
We first studied whether genetic ablation of Pmca4 in cardiac
fibroblasts modified intracellular calcium. PMCA4 was expressed
in mouse adult cardiac fibroblasts (ACFs) and its expression
was significantly reduced in cardiac fibroblasts isolated from
PMCA4� /� mice as detected by immunofluorescence, quanti-
tative reverse transcriptase–PCR (qRT–PCR) and western blot
analyses (Fig. 1a–c). We examined basal intracellular calcium in
these cells using the calcium sensitive dye fluo-3 and found that it
was 25% higher in PMCA4� /� fibroblasts compared with wild
type (WT; Fig. 1d). This finding suggests that PMCA4 plays a key
role in maintaining physiological calcium levels in cardiac
fibroblasts.

As calcium mediates multiple signalling pathways and
gene expression, we investigated the transcription profile in

PMCA4� /� fibroblasts. Using an Affymetrix microarray
GeneChip technology, we first examined the messenger RNA
expression profile of PMCA4� /� fibroblasts. Interestingly, we
found that several genes involved in regulating Wnt signalling
were elevated in PMCA4� /� fibroblasts, such as sFRP2 and
IGF-binding protein (IGFBP) 4 and 5 (Supplementary Fig. 1A).
qRT–PCR and western blots analyses confirmed that sFRP2
mRNA and protein were significantly and consistently elevated
in PMCA4� /� cardiac fibroblasts (Fig. 1e–g). In addition,
qRT–PCR analysis showed that IGFBP4 and IGFBP5 were also
elevated in PMCA4� /� fibroblasts (Supplementary Fig. 1B,C).
However, in this study we focused on sFRP2, as it is known
that this molecule plays an essential role in mediating cardiac
remodelling12,13.

sFRP2 expression is induced by the transcription factor Pax2
(ref. 14). We therefore analysed Pax2 expression and found it to
be significantly elevated in PMCA4� /� cardiac fibroblasts
(Fig. 1h). To further investigate the mechanism by which PMCA4
regulates sFRP2 expression, we then focused on nuclear factor-kB
(NF-kB) signalling because: (i) NF-kB regulates Pax2
expression15 and (ii) PMCA4 has been demonstrated to be an
upstream regulator of NF-kB16. Using an adenoviral-mediated
NF-kB-luciferase reporter construct, we detected significantly
higher NF-kB activity in PMCA4� /� fibroblasts (Fig. 1i). This
increase might be due to the elevated intracellular calcium in
PMCA4� /� fibroblasts, because NF-kB activity has been
associated with intracellular calcium levels17. To further
confirm if NF-kB signalling regulates sFRP2 expression, we
treated fibroblasts with the NF-kB inhibitor BAY11–7082
(10 mM). As shown in Fig. 1j, the level of sFRP2 expression in
PMCA4� /� fibroblasts was significantly reduced following
treatment with BAY11–7082. Together, our data suggested that
signalling via NF-kB and Pax2 pathways may be responsible for
the raised sFRP2 expression in these cells.

PMCA4� /� fibroblast conditioned medium attenuates
hypertrophy. sFRP2 is a potent inhibitor of Wnt signalling,
which plays key roles in mediating cardiac growth and patholo-
gical hypertrophy18. Therefore, we hypothesized that higher
sFRP2 production by PMCA4� /� cardiac fibroblasts may
protect against cardiomyocyte hypertrophy via a paracrine
mechanism. To test this hypothesis, we performed in vitro
experiments using isolated neonatal rat cardiomyocytes
(NRCMs). After 2 days of culture in normal medium, we
treated NRCMs with conditioned medium from either WT or
PMCA4� /� ACFs. We then induced cellular hypertrophy by
stimulating cells with phenylephrine (30 mM for 72 h) and
measured cell size, and found that NRCMs showed a
significantly less hypertrophic response when treated with
conditioned medium from PMCA4� /� fibroblasts compared
with WT fibroblasts (Fig. 2a,b). Analysis of the levels of atrial
natriuretic peptide (ANP) and brain natriuretic peptide (BNP)
expression also supported this finding (Supplementary Fig. 2A,B).
This data indicated that PMCA4� /� fibroblasts might secrete a
factor that represses hypertrophy. To test whether sFRP2 was the
important factor, we conducted rescue experiments by inhibiting
sFRP2 activity with an anti-sFRP2 antibody added to the
conditioned medium. Treating the cells with anti-sFRP2
abolished the anti-hypertrophic effect of the conditioned
medium from PMCA4� /� fibroblasts (Fig. 2a,b). Furthermore,
we performed enzyle-linked immunosorbent assay analysis of the
conditioned medium, which showed that the level of sFRP2 was
significantly higher in conditioned medium from PMCA4� /�

fibroblasts compared with WT fibroblasts (Fig. 2c). To examine
whether Wnt signalling was affected, we generated adenovirus
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carrying the Wnt-luciferase reporter construct19. Using this
construct, we showed that in cells treated with conditioned
medium from PMCA4� /� fibroblasts, the phenylephrine-
induced Wnt signalling was significantly lower compared with
cells in conditioned medium from WT fibroblasts (Fig. 2d).
Consistently, treatment with anti-sFRP2 antibody abolished the
difference in Wnt signal activation (Fig. 2d). These results

demonstrated that PMCA4� /� fibroblasts protect against
phenylephrine-induced cardiomyocyte hypertrophy, possibly by
secreting sFRP2. We also tested the anti-hypertrophic effect
of PMCA4� /� fibroblast conditioned medium when used to
culture adult rat cardiomyocytes. Consistent results were obtained
from experiments using isolated adult rat cardiomyocytes as
shown in Supplementary Fig. 2C,D.
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Figure 1 | Pmca4 gene ablation increased sFRP2 expression in ACFs. (a) Immunofluorescence analysis of ACFs isolated from WT and PMCA4� /� mice.

Cells were stained with anti-DDR2 (fibroblasts marker) and anti-PMCA4 antibodies (scale bars, 25mm). (b) qRT–PCR analysis showing a significant

reduction in Pmca4 level in ACFs of PMCA4� /� mice (n¼4; *Po0.05). (c) Western blotting to detect PMCA4 protein level in ACFs and quantification of

band density showing significant reduction of PMCA4 expression in PMCA4� /� cardiac fibroblasts (n¼4; *Po0.05). (d) Analysis of basal intracellular

calcium showed significantly elevated intracellular calcium level in PMCA4� /� cardiac fibroblasts (n¼4; *Po0.05). (e) Real-time RT–PCR and

(f) western blot analysis, to examine sFRP2 expression in cardiac fibroblasts. (g) Quantification of band density supported the qRT–PCR analysis, showing

significantly increased sFRP2 expression in PMCA4� /� fibroblasts (n¼ 5; *Po0.05. (h) Expression of Pax2 was also elevated in PMCA4� /� fibroblasts

(n¼4; *Po0.05). (i) Using adenovirus-mediated NF-kB luciferase reporter construct, we detected a higher level of NF-kB activity in fibroblasts lacking

PMCA4 (n¼4; *Po0.05). (j) Treatment with NF-kB inhibitor (BAY11–7082) at 10mM for 24 h remarkably reduced sFRP2 mRNA level in PMCA4� /�

fibroblasts as detected by qRT–PCR (n¼4; *Po0.05). Student’s t-test was used in all statistical tests above. All error bars represent the s.e.m.
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TAC-induced hypertrophy is attenuated in PMCA4� /� mice.
To investigate the anti-hypertrophic effect of ablating the Pmca4
gene in vivo, we analysed our PMCA4 global knockout (KO) mice
(PMCA4� /� mice)20. In PMCA4� /� hearts, PMCA4 was
completely ablated as we previously described21. We found that
sFRP2 expression was increased in the hearts of PMCA4� /�

mice (Fig. 3a). We then subjected these mice to transverse aortic
constriction (TAC) for 5 weeks, to induce cardiac pressure
overload. Systemic deletion of PMCA4 attenuated pathological
hypertrophy in response to pressure overload as shown by heart
weight/tibia length (HW/TL) ratio, cardiomyocyte cell surface
area and echocardiography assessments (Fig. 3b–e and
Supplementary Table 1). In these mice, the hypertrophic
marker ANP was also lower (Supplementary Fig. 3A). However,
we did not observe changes in cardiac contractility in response to
TAC, as indicated by the haemodynamic parameters dP/dtmax

and dP/dtmin (Supplementary Fig. 3B,C).
To examine activation of the Wnt pathway in this model,

we measured the level of active (non-phosphorylated) b-catenin.
After TAC, active b-catenin was significantly lower in PMCA4� /�–
TAC mice (Fig. 3f,g). Consistent with this finding, TCF4,
a b-catenin target gene, was significantly reduced in PMCA4� /�–
TAC compared with WT–TAC mice, as measured by qRT–PCR
(Supplementary Fig. 3D). These results suggested that the
Wnt/b-catenin pathway was downregulated after TAC in
PMCA4� /� mice compared with WT.

Next, we analysed how PMCA4� /� mice responded to
exercise-induced cardiac hypertrophy by subjecting them

to swimming for 4 weeks. In contrast to the TAC model,
the hypertrophic response to swimming exercise was
unaltered (Supplementary Fig. 3E) suggesting that PMCA4
specifically regulates pathological but not physiological cardiac
hypertrophy.

To analyse the extent of cardiac fibrosis, we stained heart
tissue sections with Masson’s trichrome staining. As shown in
Supplementary Fig. 3F,G, we did not find any significant
difference in the level of fibrosis between PMCA4� /� mice
and WT controls.

Pmca4 ablation protects against long-term pressure overload.
Although our 5 weeks TAC model was sufficient to induce
hypertrophy, we did not observe any significant effect on cardiac
function as indicated by haemodynamic data. Therefore, we
performed a more severe model by inducing long-term pressure
overload for 12 weeks in PMCA4� /� mice. With this TAC
model, we found that WT mice had a dramatically reduced
survival rate (40% survival after 12 weeks of TAC), while all of the
PMCA4� /� mice survived until 12 weeks following TAC
(Fig. 3h). When we assessed cardiac function in surviving animals
at 12 weeks after TAC, we found that PMCA4� /� mice had
significantly better contractility as indicated by dP/dtmax and
dP/dtmin values (Supplementary Fig. 4A,B). These data showed
that Pmca4 gene deletion protected against the development
of contractile dysfunction and improved the survival after
long-term TAC.
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Figure 2 | PMCA4� /� fibroblast conditioned medium exerts an anti-hypertrophic effect. (a) Representative images of NRCMs cultured in conditioned

medium of either WT or PMCA4� /� cardiac fibroblasts. NRCMs were treated with phenylephrine (PE), 30mM or PE with anti-sFRP2 antibody

(0.2mg ml� 1) for 72 h. Cells were then stained with a-actinin antibody, to specifically visualize cardiomyocytes. Scale bar, 25mm. (b) Measurement of cell

surface area indicated that treatment with PMCA4� /� fibroblasts conditioned medium (KO) significantly reduced PE-induced hypertrophy (results were

from three independent experiments conducted in triplicate; a minimum of 100 cells were measured per replicate, *Po0.05, one-way analysis of variance

(ANOVA) followed by post-hoc multiple comparison). Addition of anti-sFRP2 antibody abolished the anti-hypertrophic effect of PMCA4� /� conditioned

medium. (c) ELISA analysis showed a significantly higher sFRP2 level in PMCA4� /� conditioned medium (n¼4 in each group; *Po0.05, Student’s t-test).

(d) Using an adenovirus expressing the TCF/LEF-luciferase construct, we detected activation of the Wnt/b-catenin pathway. Consistent with this

observation, conditioned medium from PMCA4� /� fibroblasts inhibited PE-induced Wnt/b-catenin activation, which was reversed by treatment with

anti-sFRP2 antibody (n¼ 3 independent experiments; *Po0.05, one-way ANOVA followed by post-hoc multiple comparison). All error bars represent

the s.e.m.
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sFRP2 contributes to attenuated hypertrophy in PMCA4� /�

mice. To investigate whether the protection against TAC-induced
hypertrophy in PMCA4� /� mice was due to the expression of
sFRP2, we subjected PMCA4� /� mice to TAC surgery and then
treated them with anti-sFRP2 antibody (200 mg per kg body
weight per day, intraperitoneally (i.p.)) or normal goat IgG at a
similar dose as control. Immunoprecipitation analysis showed
that injection with anti-sFRP2 antibody increased the interaction
between Wnt and its receptor, Frizzled, in the heart
(Supplementary Fig. 5A). This data indicated that anti-sFRP2
antibody treatment successfully blocked sFRP2 activity in vivo.
Furthermore, we found that the hypertrophic response to TAC
was restored in PMCA4� /� mice treated with anti-sFRP2 anti-
body as indicated by analysis of left ventricular mass/TL ratio,
cardiomyocyte cross-sectional area and BNP expression
(Supplementary Fig. 5B–F). In contrast, PMCA4� /� mice
treated with control IgG displayed an attenuated hypertrophic

response. The level of active b-catenin was remarkably increased
following anti-sFRP2 treatment in TAC-treated mice,
but in sham-treated animals we observed only slight (B12%)
elevation of active b-catenin level after anti-sFRP2 treatment
(Supplementary Fig. 5G,H). This might be due to the fact that
the Wnt pathway is basally inactive in the adult heart and
re-activated in pathological conditions including pressure
overload18. Overall, our data suggests that the anti-hypertrophic
effect of PMCA4 ablation in mice was at least in part due to
sFRP2 expression.

Hypertrophy unaltered by Pmca4 ablation in cardiomyocytes.
To investigate the effects of PMCA4 cell-specific ablation in the
heart, we generated conditional KO models. We generated mice
carrying loxP sequences flanking exons 2 and 3 of the Pmca4
gene, which contain the start codon (Supplementary Fig. 6).
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Figure 3 | Systemic deletion of Pmca4 attenuated the hypertrophic response to TAC. (a) sFRP2 level was detected in heart tissues using qRT–PCR (WT,

n¼4; PMCA4� /� , n¼ 3; *Po0.05, Student’s t-test). (b) Representative image of hearts from WT and PMCA4� /� mice following TAC (5 weeks) or

sham operation (scale bar, 5 mm). (c) Measurement of HW/TL ratio showed significant reduction of the hypertrophic response in PMCA4� /� mice

(n¼ 10 in each group; *Po0.05, one-way analysis of variance (ANOVA) followed by post-hoc multiple comparison). (d) Representative heart tissue

sections stained with haematoxylin and eosin, and (e) measurement of cardiomyocyte cross-sectional area showed smaller cardiomyocyte size in

PMCA4� /� mice after TAC (scale bars, 50mm,*Po0.05, one-way ANOVA followed by post-hoc multiple comparison). (f) Western blot analysis of active

b-catenin and (g) quantification of band density level indicated a higher level of b-catenin activation in PMCA4� /� mice after TAC (n¼4 in each group;

*Po0.05, one-way ANOVA followed by post-hoc multiple comparison). (h) When stimulated with long-term (12 weeks) TAC, more PMCA4� /� mice
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experiments). All error bars represent the s.e.m.
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We crossed these mice with aMHC-Cre transgenic mice to
establish PMCA4 cardiomyocyte-specific KO mice (PMCA4cko).
Expression analyses confirmed the specific ablation of PMCA4 in
the cardiomyocytes, whereas the cardiac fibroblasts retained
PMCA4 expression (Fig. 4a–e). We then subjected these mice to
TAC for 5 weeks and used Pmca4 floxed mice (PMCA4flox/flox) as
controls. After 5 weeks of pressure overload, PMCA4cko did not
display differences in the hypertrophic response, as indicated

by HW/TL ratio, cardiomyocyte cross-sectional area and
echocardiographic analysis (Fig. 4f–i and Supplementary
Table 2). In addition, the level of ANP expression was not
different between PMCA4cko and PMCA4flox/flox mice
(Supplementary Fig. 7A). By analysing cardiac haemodynamics
(dP/dtmax and dP/dtmin), we also found that there was no dif-
ference in cardiac contractile function between PMCA4flox/flox

and PMCA4cko mice after TAC (Supplementary Fig. 7B,C).
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response between PMCA4cko and controls (scale bars, 50mM; n¼4 per group). (j) Representative western blotting and (k) measurement of band density

showed no difference in the level of active b-catenin between PMCA4cko and controls (n¼ 5 per group), NS, not significant. All error bars represent

the s.e.m.
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Furthermore, active b-catenin levels and TCF4 gene expression
were not different between PMCA4cko and PMCA4flox/flox mice
after TAC, suggesting that Wnt/b-catenin signal activation was
unaltered (Fig. 4j,k and Supplementary Fig. 7D). Similar to the
data from PMCA4� /� mice, PMCA4cko did not show any
difference in the level of fibrosis compared with controls
(Supplementary Fig. 7E,F). Together, this data confirmed that the

protective effect of PMCA4 ablation was not through signalling in
cardiomyocytes.

Pmca4 deletion in fibroblasts reduces hypertrophy after TAC.
Next, we generated a PMCA4 fibroblasts-specific KO (PMCA4fko)
by crossing PMCA4flox/flox mice with Postn-Cre transgenic mice.
These mice express Cre recombinase under the control of the
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Figure 5 | Fibroblast-specific Pmca4 ablation reduced TAC-induced hypertrophy. (a) Image of PCR analysis to detect the deleted Pmca4 allele in
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(c) Quantification of band density (relative to expression in control mice) showed that expression of PMCA4 was ablated only in cardiac fibroblasts of
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phalloidin or anti-DDR2 (red). Expression of PMCA4 was ablated in isolated ACFs but not in cardiomyocytes of PMCA4fko mice (scale bars, 25mm).

(f) Image of hearts from PMCA4fko and control littermates after TAC for 5 weeks. (g) HW/TL ratio analysis showed significantly reduced hypertrophy in
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Periostin (Postn) gene promoter8,22 and have been demonstrated
to knock out genes specifically in cardiac fibroblasts but not in
cardiomyocytes8,23. The deleted allele was present in DNA
isolated from the heart of PMCA4fko, although as expected, the
WT (non-deleted) allele was also present in the heart, presumably
as a consequence of DNA from cardiomyocytes (Fig. 5a). Using
western blotting and immunofluorescence, we found specific
ablation of PMCA4 expression in isolated cardiac fibroblasts
of PMCA4fko mice, whereas expression of PMCA4 in
cardiomyocytes remained unaltered (Fig. 5b–e). To induce
pressure-overload hypertrophy, we subjected PMCA4fko to TAC
for 5 weeks. In contrast to the data from PMCA4cko mice,
PMCA4fko exhibited a significantly reduced hypertrophic
response, as indicated by measurement of HW/TL ratio, the
cross-sectional area of cardiomyocytes and analysis of
echocardiographic parameters (Fig. 5f–i and Supplementary
Table 3). Furthermore, qRT–PCR data showed a significantly
reduced level of the hypertrophic marker ANP in PMCA4fko after
TAC (Supplementary Fig. 8A). However, consistent with data
from PMCA4� /� mice, contractile function was unchanged in
PMCA4fko compared with control mice following TAC
(Supplementary Fig. 8B,C). By analysing Wnt/b-catenin signal
activation, we found that both active b-catenin and expression of
TCF4 were decreased in PMCA4fko mice after TAC compared
with WT (Fig. 5j,k and Supplementary Fig. 8D). However,
consistent with data obtained from PMCA4� /� mice there was
no difference in the level of fibrosis in PMCA4fko compared with
control mice (Supplementary Fig. 8E,F). These results clearly
supported the idea that signal modulation by PMCA4 in cardiac

fibroblasts was important in mediating the anti-hypertrophic
effect.

Pharmacological PMCA4 inhibition enhances sFRP2 expression.
Data from our animal models together with observations in
isolated cardiac fibroblasts prompted us to speculate that a
reduction in PMCA4 activity in cardiac fibroblasts will provide a
beneficial effect against pathological stimuli in the heart. By
screening a library of medically optimized drug-like molecules
we have identified aurintricarboxylic acid (ATA) as a potent
pharmacological inhibitor of PMCA4 (ref. 24). ATA has an IC50
of 150 nM for PMCA4 inhibition and only produced a minor
effect on the second isoform of PMCA expressed in the heart,
PMCA1 (ref. 24). We found that ATA inhibits PMCA4 activity
at a very low concentration (IC50¼ 150 nM) (ref. 24). However,
it is also known that at higher concentrations ATA also inhibits
other enzymes, such as nucleases (at 10–50 mM) (ref. 25), calpain
(IC50¼ 22 mM) (ref. 26) and influenza virus neuraminidase
(at 100mg ml� 1 or B210mM) (ref. 27). Therefore, in this study
we used a very low dose of ATA (1 mM), to ensure that its effects
are probably only due to PMCA4 inhibition.

We treated WT cardiac fibroblasts with ATA at this dose for
48 h and found that it increased the basal level of calcium (Fig. 6a)
and NF-kB activity (Fig. 6b). We also found that extending this
treatment to 3 or 10 days significantly enhanced sFRP2
expression in isolated WT cardiac fibroblasts (Fig. 6c). To
examine whether ATA treatment increased cardiac sFRP2
expression in vivo, we injected WT C57Bl/6 mice with ATA
(5 mg per kg body weight per day, i.p.) for 2 weeks. We found that
cardiac sFRP2 was significantly increased in ATA-treated mice
(Fig. 6d).

ATA treatment attenuates TAC-induced hypertrophy. Next, we
tested the effects of ATA on pressure-overload hypertrophy
in vivo. We treated WT C57Bl/6 mice with ATA (5 mg per kg
body weight per day) from day 3 before TAC until 2 weeks after.
ATA remarkably reduced the hypertrophic response as indicated
by decreased HW/TL ratio, cell surface area and expression of the
hypertrophic marker ANP (Fig. 7a–e). To analyse activation of
the Wnt/b-catenin pathway, we examined the levels of TCF4 gene
expression and active b-catenin in the heart, and found that
they were downregulated in TAC animals treated with ATA
(Fig. 7f–h). However, cardiac contractility was unaltered
(Supplementary Fig. 9A,B), which was consistent with the data
from our KO models.

ATA reverses established cardiac hypertrophy. We then tested
whether ATA could reverse previously established cardiac
hypertrophy (‘treatment strategy’) (Fig. 8a). Starting 1 week after
TAC, we treated C57Bl/6 mice with ATA at 5 mg per kg body
weight per day. Echocardiography confirmed myocardial hyper-
trophy at this stage (Supplementary Fig. 10A). Histological ana-
lysis, HW/TL ratio measurement and expression of hypertrophic
markers ANP and BNP showed that ATA treatment significantly
reversed the hypertrophic response (Fig. 8b–f). Furthermore,
serial echocardiography analysis revealed that the reduction in left
ventricular mass/TL ratio began after ATA treatment (Fig. 8g),
suggesting that the effect was due to ATA treatment. Similar
to our other models, we did not observe changes in cardiac
contractility in this model (Supplementary Fig. 10B,C).

As an initial step to assess whether systemic treatment of ATA
(5 mg per kg body weight per day for 2 weeks) produces adverse
effects in other major organs such as the liver and kidney, we
measured the level of serum alanine transaminase, aspartate
transaminase and creatinine in ATA-treated mice. As shown in
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Figure 6 | PMCA4 inhibition increased sFRP2 levels in cardiac fibroblasts

and the heart. (a) ACFs isolated from WT mice were subjected to ATA
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treated with ATA (1mM) for 3 or 10 days. qRT–PCR analysis showed that

sFRP2 level was significantly enhanced in ATA-treated cells (n¼4;

*Po0.05, Student’s t-test). (d) WT mice were injected with ATA
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Supplementary Fig. 11A,B, we did not find any difference
between ATA- and vehicle-treated mice. This suggested that the
ATA treatment was unlikely to cause toxicity in major organs
such as the liver and kidney.

ATA treatment in PMCA4 knockout mouse models. To further
confirm that the anti-hypertrophic effect of ATA is due to the
inhibition of PMCA4, we performed TAC on PMCA4 global KO
mice (PMCA4� /� ) and treated them with ATA. If ATA had
additional PMCA4-independent effects, the expectation would be
that it would further reduce HW, cell size and expression of
hypertrophic markers in PMCA4� /� animals. Data shown in
Fig. 9a–f showed that ATA treatment did not further reduce these
parameters in the PMCA4� /� mice.

We then examined whether ATA had any anti-hypertrophic
effects when PMCA4 was specifically ablated in cardiomyocytes.
As shown in Fig. 10a–f, ATA treatment reduced hypertrophy in
PMCA4cko mice as indicated by HW/TL ratio, cell size
measurement and analysis of the hypertrophic marker BNP,
suggesting that the anti-hypertrophic effect of ATA in vivo was
not via modulating PMCA4 in cardiomyocytes. To confirm this

finding in vitro, we tested the effect of ATA treatment on isolated
cardiomyocytes. At 1 mM, ATA did not significantly alter
phenylephrine-induced cardiomyocyte hypertrophy (30 mM
phenylephrine for 72 h), as indicated by cell surface area analysis
(Supplementary Fig. 12A,B).

Finally, we evaluated the effects of ATA treatment on
PMCA4fko mice. In contrast to the data obtained from PMCA4cko

mice, ATA treatment did not produce an anti-hypertrophic effect
in PMCA4fko mice as shown in Fig. 10g–l. Together, the data
provide strong support that the anti-hypertrophic effect of ATA
was due to modulation of PMCA4 in cardiac fibroblasts.

Discussion
Overall, our results show that PMCA4 is a key regulator of
pathological cardiac hypertrophy that can be pharmacologically
targeted. With global and conditional KO models and an in vitro
system, we demonstrated that PMCA4 mediates a paracrine
mechanism in the heart. Inhibiting PMCA4, both genetically and
pharmacologically, elevated expression of sFRP2 in cardiac
fibroblasts, which inhibited Wnt signalling in cardiomyocytes
and protected them from developing pathological hypertrophy.
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Importantly, we also showed that a novel and potent inhibitor of
PMCA4, ATA24, efficiently reduced pathological hypertrophy.
These data provide in vivo evidence that PMCA4 is a promising
and readily ‘druggable’ target for anti-hypertrophic therapy.

The role of cardiac fibroblasts in mediating cellular signalling
in the heart is increasingly evident. Traditionally, fibroblasts have
been regarded as the main regulator of extracellular matrix
composition due to their capacity in producing components
of the extracellular matrix28. However, recent knowledge has
suggested that cardiac fibroblasts can mediate signal transmission
in the heart through paracrine mechanisms or cell–cell contact7.
Cardiac fibroblasts secrete a number of proteins that regulate
key processes in the heart, such as the pro-hypertrophic
factor fibroblast growth factor-2 (ref. 29), the cytoprotective
substance IGF1 (ref. 8), and interleukin-33, which are also
anti-hypertrophic30. Furthermore, cardiac fibroblasts may also
release microRNA to the neighbouring cells, including miR21-3p,
a fibroblast-derived microRNA, which modulates cardiac
hypertrophy9.

On the basis of this knowledge, we studied calcium signalling
in cardiac fibroblasts, in particular those regulated by PMCA4.

This is because PMCA4 is known to be a major regulator of local
calcium signals in cardiomyocytes21,31–33, but its role in cardiac
fibroblasts is relatively unknown. Our observations demonstrate
that PMCA4 regulates expression of major signalling molecules in
cardiac fibroblasts. Specifically, we identified that inhibiting
PMCA4 expression/activity significantly increased expression of
sFRP2, a potent inhibitor of the Wnt pathway. The mechanism
may be due to the increase in NF-kB activity and Pax2 expression
level. Pax2 is the major transcription factor responsible for sFRP2
expression14, whereas NF-kB regulates Pax2 expression15.
Consistent with this, we showed that Pax2 expression and
NF-kB activity were increased in PMCA4� /� fibroblasts.
Increased NF-kB activity might be caused by increased resting
levels of intracellular calcium in PMCA4� /� fibroblasts, similar
to the mechanism described previously in mdx skeletal
myotubes17.

The Wnt signalling pathway is a major regulator of cardiac
development, hypertrophy and failure; it is normally active
during embryonic development and is re-activated under
pathological conditions18. Activation of this pathway will
induce the canonical downstream pathway via b-catenin. The
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overall result is the activation of a gene programme for growth
and development18,34. Consistent with this knowledge, our
PMCA4� /� mice, which express higher levels of Wnt inhibitor
sFRP2, exhibited a reduced hypertrophic response to pressure-
overload stimulus. Experiments using conditional KO models
together with analyses using a cellular model strongly indicate a
paracrine mechanism in this process. In addition, treatment with
anti-sFRP2 antibody abolishes the anti-hypertrophic effect of
PMCA4 ablation in mice providing direct in vivo evidence that
sFRP2 is a downstream effector of PMCA4-mediated signalling.

In these models we did not observe any alteration in cardiac
function following 5 weeks of TAC in both WT and KO mice.
However, we found a dramatic reduction in heart function and a
higher mortality rate in WT mice compared with PMCA4� /�

mice after 12 weeks of TAC, indicating that PMCA4 ablation may
preserve cardiac contractile function and protect against the
development of heart failure in the chronic pressure overload
model.

Despite protection against pressure-overload-induced enlarge-
ment of the cardiomyocytes, we did not observe a significant
reduction in cardiac fibrosis in our global and cell-specific
PMCA4 KO strains following TAC surgery. Previous studies have
provided conflicting evidence regarding the role of sFRP2 in
mediating cardiac fibrosis in the myocardial infarction model.
Kobayashi et al.13 showed that genetic ablation of sFRP2 reduced
the extent of cardiac fibrosis following myocardial infarction,
suggesting that sFRP2 might promote the development of fibrosis.
In contrast, other studies have demonstrated that injection of
recombinant sFRP2 directly into an infarcted heart resulted in
attenuated remodelling and fibrosis12, indicating a protective role
for sFRP2. It is well observed that in general the extent of fibrosis
following TAC is considerably less than after myocardial
infarction and, as such, this may explain why we did not see
any difference in the fibrosis level in our models. It would
therefore be very interesting to evaluate the effect of PMCA4
inhibition in a model of myocardial infarction; however, these
experiments are beyond the scope of this study.

The process of generating our PMCA4 global KO mice has
been described previously20. We targeted exon 2 and part of exon
3 of the mouse Pmca4 gene using a neomycin cassette. As exon 2
contains the start codon, this strategy completely ablated PMCA4
protein from the heart, as described in our previous publication21.
Another study, described after that publication, developed a
second Pmca4-targeted mouse line, in which codons 448–474 in
exon 11 were replaced by a neomycin cassette35. This strategy
did not result in a complete KO, as the truncated Pmca4
mRNA transcript could still be detected in all tissues tested35.
Furthermore, Afroze et al.36 compared the expression of PMCA4
in both KO lines and demonstrated that PMCA4 was completely
absent from our KO mice, but not the other line. The difference
in the nature of the KO models may explain the discrepancy of
the phenotypes observed in these two lines of KO mice.
Preliminary descriptive data by Wu et al.33 suggested a
minimal (o10%) increase in the hypertrophic response to TAC
in the ‘exon 11 targeted’ PMCA4 KO line. However, further study
using this KO line is in agreement with our current data: it was
shown that cross-breeding of a hypertrophic cardiomyopathy
mouse model with this PMCA4 KO line resulted in the reduction
of hypertrophy37. In addition, our recent findings are supported
by data from two other conditional KOs, which should clarify
that any discrepancy is due to expression level as described above.

It is also important to note that PMCA4 may also have a
signalling role in the cardiomyocytes. We previously showed
that moderately overexpressing PMCA4 (B2-fold) in cardiac
myocytes reduced the b-adrenergic contractile response and
exaggerated the hypertrophic response following chronic
stimulation with isoproterenol32. In contrast, overexpressing
PMCA4 at high levels (B6-fold) in cardiomyocytes reduced
hypertrophy following TAC33. In the latter model, PMCA4
recruited calcineurin, which eventually reduced the calcineurin/
nuclear factor of activated T-cells (NFAT) signal activity33. Thus,
overexpressing PMCA4 at non-physiological levels may produce
an anchoring effect to its interacting partners, including
calcineurin. Indeed, in cardiomyocytes isolated from our

P
M

C
A

4–/
–

0

2

4

6

8

0

100

200

300

0

2

4

6

8

Sham TAC
+vehicle

TAC
+ATA

Heart weight/tibia length

H
W

/T
L 

(m
g 

 m
m

–1
)

Sha
m

TAC +
 V

eh

PM
CA4

–/
–

TAC +
 A

TA
Sha

m

TAC +
 V

eh

PM
CA4

–/
–

TAC +
 A

TA
Sha

m

TAC +
 V

eh

PM
CA4

–/
–

TAC +
 A

TA

Sha
m

TAC +
 V

eh

PM
CA4

–/
–

TAC +
 A

TA

Cell surface area ANP expression

R
el

at
iv

e 
m

R
N

A
 le

ve
l

Sham TAC + vehicle

TAC + ATA

0

2

4

6

8

BNP expression

R
el

at
iv

e 
m

R
N

A
 le

ve
l

C
el

l a
re

a 
(μ

m
2 )

cba

d e f

Figure 9 | ATA had no additional effect on hypertrophy in PMCA4� /� mice following TAC. (a) Image of PMCA4� /� hearts at the end of experiments.

(b) Measurement of HW/TL ratio and analysis of cross-sectional cell surface area on histological sections (scale bars, 50 mm). (c,d) ATA treatment did not

affect hypertrophic response in PMCA4� /� mice (n¼4–6 in each group). (e) The level of ANP and (f) BNP were not altered by ATA treatment in

PMCA4� /� mice. All error bars represent the s.e.m.
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PMCA4� /� mice, membrane calcineurin was reduced but total
calcineurin was unaltered (Supplementary Fig. 13). In support of
this notion, we recently showed that PMCA4 exerts an anchoring
effect on neuronal nitric oxide synthase (nNOS)21. This suggests
that the effects of PMCA4 overexpression might depend on the
level of transgene expression and might explain the phenotype
discrepancy between different transgenic lines.

Although systemic ablation of PMCA4 resulted in almost
complete attenuation of the hypertrophic response, the effect of
PMCA4 KO in fibroblasts showed a significant but not complete
attenuation of the hypertrophic response. This indicated that
PMCA4 ablation in other cell types such as endothelial and
smooth muscle cells might contribute to the modulation of
cardiac hypertrophy. Indeed, several reports have shown that
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PMCA4 regulates important signalling pathways in endothelial
cells (that is, the vascular endothelial growth factor-mediated
angiogenesis)38 and in smooth muscle cells (that is, the
neuronal nitric oxide synthase (nNOS)-mediated contraction)39.
Further studies are needed to fully characterize the role of
PMCA4 in endothelial cells and smooth muscle cells in the
regulation of cardiac hypertrophy.

Perhaps the most important aspect of this study is the possible
translational implications. We have demonstrated in this study
that interfering with the PMCA4-mediated signal using a
pharmacological inhibitor may be beneficial for controlling
pathological hypertrophy. The nature of PMCA4 as a membrane
protein makes this molecule pharmacologically targetable. In
addition, ATPases are highly amenable to large-scale chemical
library screens. Using a medium-scale screening system we have
identified ATA as a potent PMCA4 inhibitor24. Strikingly,
inhibition of PMCA4 using ATA could suppress and reverse
cardiac hypertrophy. Observations using global and conditional
KO mouse models, as well as in vitro experiments by treating
isolated cardiomyocytes with ATA (1 mM), strongly support the
idea that ATA mainly works in cardiac fibroblasts but not in
myocytes. Thus, this study provides direct evidence that cardiac
fibroblasts can be targeted pharmacologically to treat myocardial
hypertrophy.

Whole-body phenotyping of our PMCA4� /� mice, including
analyses of blood chemistry, nervous system, X-ray and dexascan
(see Supplementary Table 4) revealed no abnormalities,
indicating that targeting this molecule is unlikely to cause side
effects in any of these organ systems. However, our previous
observations showed that male PMCA4� /� mice exhibited reduced
sperm motility20. Although the effect of systemic administration of a
PMCA4 inhibitor on fertility needs addressing, it should be noted
that there is a blood–testis barrier similar to the blood–brain barrier
that most small molecules do not cross40.

Although industrially refined derivatives may be needed for
human drug development, ATA provides proof of principle for
our approach. Not only did it prevent pathological hypertrophy
when applied before overload but it also considerably reduced
hypertrophy when applied after the establishment of hypertro-
phy, which is a more realistic scenario for translating these results
to future clinical studies.

Methods
Animals. Mice with a targeted deletion of exon 2 and part of exon 3, which contain
the start codon of the Pmca4 gene were used in this study20. We used 8- to
10-week-old male PMCA4 KO mice for pressure-overload or exercise-induced
hypertrophy experiments. Age- and sex-matched WT littermates were used as
controls. For tissue-specific KOs, we generated the PMCA4flox/flox mice by flanking
exon 2 and exon 3 of the Pmca4 gene with loxP sites (Supplementary Fig. 6). To
generate cardiomyocyte-specific KOs, we crossed these animals with aMHC-Cre
mice (obtained from Dr Michael Schneider’s laboratory41). To generate fibroblast-
specific KO, we crossed PMCA4flox/flox mice with Postn-Cre mice (a generous gift
from Dr Simon Conway, Indiana University School of Medicine22). We used male,
8–10 weeks old C57Bl/6 mice, to test the effect of ATA during pressure overload
hypertrophy. Animal studies were performed in accordance with the United
Kingdom Animals (Scientific Procedures) Act 1986 and were approved by the
University of Manchester Ethics Committee.

Transverse aortic constriction. To produce a model of cardiac pressure overload,
mice were subjected to TAC or a sham operation. Mice were induced with 5%
isofluorane, orally intubated and then placed on a ventilator set to 200 breaths per
minute, tidal volume 0.1 ml (Minivent 845, Harvard Apparatus). Anaesthesia was
maintained at 3% isofluorane in 100% O2 throughout the surgery. With the aid of a
binocular stereomicroscope (Olympus) the chest was opened via minithoracotomy,
to expose the aortic arch, and TAC was performed by tying a 7–0 silk suture
around a 27-gauge needle overlying the arch at the point between the brachioce-
phalic trunk and left common carotid artery. In our hands, this typically produces a
B25–30 mm Hg pressure gradient between the left and right carotid artery42,43.
For sham operations, the arch was exposed and a suture was passed around the
back of the aorta before removal without tying. The chest was then sutured and

0.1 mg per kg body weight of buprenorphine was administered via i.p. injection.
Mice were recovered in a 30 �C incubator before returning to normal housing.
Heart tissues were collected at the end of experiments, for histology and molecular
analyses.

For TAC experiments involving anti-sFRP2 antibody administration,
8-week-old PMCA4� /�mice were injected i.p. with either 200mg per kg control
goat IgG or goat anti-mouse sFRP2 antibody (R&D Systems) 1 day before TAC.
They were then injected i.p. at this dose daily for a further 2 weeks (5 out of 7 days).

Echocardiography and haemodynamic analyses. For haemodynamic analysis,
mice were anaesthetised by i.p. injection of tribromoethanol (Avertin, 250 mg per
kg body weight, Sigma). A midline cervical incision was made and the sternohyoid
muscles were retracted, to expose the right carotid artery, which was tied at the
bifurcation point, preventing regurgitation from the periphery. The right carotid
artery was occluded proximally, allowing an incision to be made with minimal
blood loss. A 1.4F pressure–volume catheter (SPR-839, Millar Instruments)
was inserted via the carotid artery and ascending aorta into the left ventricle.
Pressure–volume changes were recorded using a PowerLab system (Millar
Instruments) once traces had stabilized. Inotropic and lusitropic function were
assessed through analysis of the maximum and minimum rates of left ventricular
pressure change, dP/dtmax and dP/dtmin, respectively, using Millar’s PVAN software.

Transthoracic echocardiography was conducted to monitor the progression of
hypertrophy following TAC in the ATA treatment experiments under anaesthesia
with 1.5% isofluorane. An Acuson Sequoia C256 ultrasound system fitted with a
14-MHz transducer (Siemens) was used to image the heart in the two-dimensional
short-axis view, whereon M-mode echocardiography was recorded, to measure the
left ventricular end diastolic diameter (LVEDD), left ventricular end systolic
diameter, and diastolic posterior wall (dPW) and interventricular septal (dIVS)
thicknesses in diastole. Measurements were obtained using the leading-edge
method over a minimum period of three cardiac cycles, with the researcher blinded
to mouse genotype and treatment. Mean wall thickness was determined by
averaging the diastolic PW and IVS thicknesses, whereas LV mass was calculated
using the formula 1.055� [(LVEDDþ dPWþ dIVS)3� LVEDD3].

Exercise-induced hypertrophy. To produce a model of exercise-induced
hypertrophy, mice were swum twice a day for 90 min, 5 out of 7 days for a period
of 4 weeks. An initial training period commenced exercise at 2� 10 min per day,
which was then increased in increments of 20 min per day until the full 2� 90 min
per day was reached. Following each swim, mice were towel dried and then
maintained at 30 �C until fully dry, with 4 h rest between sessions. Water was
maintained at a temperature of 30–32 �C in 18-l tanks at a depth of 30 cm.
Sedentary controls were handled daily.

Isolation of adult and neonatal cardiomyocytes. Adult mouse cardiomyocytes
were isolated from 3- to 4-month-old animals. In brief, mice were killed by cervical
dislocation, the hearts were rapidly removed and then perfused via the aorta with
isolation solution pH 7.34 (134 mM NaCl, 11 mM glucose, 4 mM KCl, 1.2 mM
MgSO4, 1.2 mM NaH2PO4 and 10 mM HEPES) for 4 min, followed by 9 min
perfusion with a solution containing 0.6 and 0.075 mg ml� 1 of collagenase type II
(Worthington) and proteases type XIV (Sigma-Aldrich), respectively. Hearts were
then perfused with Tyrode solution containing 50 mM taurine pH 7.34 for 12 min.
The ventricles were cut from the heart and placed in Tyrode-taurine solution. The
ventricles were then cut in half and pipetted up and down through a Pasteur
pipette in 5 ml of Tyrode-taurine solution, to release the cardiomyocytes.

Adult rat cardiomyocytes were isolated and cultured following a protocol
described by O’Connell et al.44 Adult female Sprague–Dawley rats were
anaesthetized with 3% isoflurane and injected i.p. with 1,000 IU per kg body weight
heparin. Hearts were then excised, cannulated via the aorta and Langendorff
perfused with perfusion buffer (120.4 mM NaCl, 5.5 mM glucose, 14.7 mM KCl,
1.2 mM MgSO4-7H2O, 0.6 mM Na2HPO4, 10 mM Na-HEPES, 0.6 mM KH2PO4,
4.6 mM NaHCO3, 30 mM Taurine and 10 mM 2,3-butanedione monoxime (BDM))
for 4 min at 4 ml min� 1 at 37 �C. The solution was then switched to digestion
buffer (perfusion buffer containing 2.4 mg ml� 1 Type II Collagenase,
Worthington) for 3 min, followed by digestion buffer containing 40 mM CaCl2 for a
further 8 min after which hearts were cut below the atria and placed in a sterile
container filled with 5 ml digestion buffer. Following transfer to a laminar flow cell
culture hood, ventricles were cut into small pieces and 10 ml myocyte stopping
buffer (perfusion buffer containing 10% fetal bovine serum (FBS) and 12.5 mM
CaCl2) added. The solution was pipetted up and down for 5 min using a plastic
transfer pipette and placed in a 50-ml tube with an additional 5 ml stopping buffer,
followed by centrifugation for 3 min at 20 g and resuspension of the pellet in 20 ml
stopping buffer containing 2 mM ATP. Calcium was then reintroduced in three
stages by repeated centrifugation (20 g for 3 min) and resuspension in 10 ml
stopping buffer containing 100, 400 and 900 mM CaCl2. Following the final
centrifugation, myocytes were resuspended in myocyte plating medium (Eagle’s
MEM w/ Hanks’ balanced salt solution (HBSS) containing 10% FBS, 10 mM BDM,
100 U ml� 1 penicillin-G, 2 mM Glutamine and 2 mM ATP) pre-equilibrated in a
37 �C 5% CO2 incubator and plated in 24-well plates on laminin-coated coverslips
for 1 h. Plating medium was then removed and myocytes gently washed with
pre-equilibrated myocyte culture medium (Eagle’s MEM w/HBSS containing
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1 mg ml� 1 BSA, 10 mM BDM, 100 U ml� 1 penicillin-G, 2 mM glutamine,
5 mg ml� 1 insulin, 5 mg ml� 1 transferring, 5 ng ml� 1 selenium) and left for 24 h.

NRCMs were isolated from 1- to 3-day-old Sprague–Dawley rat neonates. Pups
were killed by cervical dislocation followed by decapitation, then briefly rinsed in
70% ethanol for surface sterilization. Next, the hearts were collected into filter-
sterilized ADS solution pH 7.35 (116 mM NaCl, 20 mM HEPES, 1 mM NaH2PO4,
5.5 mM glucose, 5.5 mM KCl and 1 mM MgSO4) on ice. Following transfer to a
laminar flow cell culture hood, ventricles were dissected from extraneous tissue and
atria, and cut into small pieces. Ventricular tissues were then digested through
shaking at 37 �C in sterile ADS solution containing 0.6 mg ml� 1 collagenase A
(Roche) and 0.6 mg ml� 1 pancreatin (Sigma) for 7 min. Cells were detached from
the tissue by passing several times through a pipette, collected from the supernatant
and discarded from this first digestion. The digestion process was then repeated a
further seven times. Collected cells from digestions 2–8 were passed through a
70-mm cell strainer, to which 2 ml of FBS (Invitrogen) was added to neutralize the
collagenase. The pooled cells were spun at 1,200 r.p.m. for 5 min and the pellet
resuspended in 40 ml of pre-plating medium (68% DMEM, 17% M199, 10% horse
serum, 5% FBS and 2.5 mg ml� 1 amphotericin B). Cardiac fibroblasts were
removed from the cell suspension through plating in 10 mm culture dishes for 1 h,
to allow them to adhere, and then retrieving the myocytes in the media for
counting. Cells were diluted to 1� 106 cells per ml with plating medium (as for
pre-plating with the addition of 1 mM BRDU (5-bromo-2-deoxyuridine)) and
incubated for 24 h at 37 �C following plating into 6-well BD Falcon Primaria tissue
culture plates (for expression analysis, 2.5� 106 cells per well) or on laminin-
coated coverslips in 24-well plates (for immunostaining, 5� 105 cells per well).
The following day, cardiomyocytes were washed twice with PBS and kept in
maintenance medium (80% DMEM and 20% Medium 199, 1% FBS, 2.5 mg ml� 1

amphotericin B and 1 mM BRDU) at 37 �C.

Isolation of ACFs. ACFs were isolated from 3- to 4-month-old mice. Mice were
killed by cervical dislocation and their hearts were rapidly removed. The hearts
were then mashed with scalpels and digested with 10 ml collagenase solution
(120 mg collagenase A (Roche) and 12 mg protease (Sigma) dissolved in 80 ml PBS
solution) at 37 �C for 5 min, for three times. Cells were collected after each
digestion and the collagenase was deactivated by addition of FBS solution. The
harvested fibroblasts were centrifuged for 5 min at 220 g (Beckman Coulter Allegra
6R). The cell pellet was resuspended in 10 ml ACF media (80% DMEM, 20% FBS,
1% penicillin/streptomycin, 1% Fungizone and 1% non-essential amino acids).
Fibroblasts were then plated in 10 ml BD Primaria tissue culture plates overnight.
The next day, the media was removed and replaced with 10 ml ACF media.

Cellular hypertrophy experiments. NRCM were cultured in cardiomyocyte
maintenance medium (68% DMEM, 17% M199, 10% horse serum, 5% FBS,
2.5 mg ml� 1 amphotericin B and 1 mM BrdU), whereas adult rat cardiomyocytes
were cultured in pre-equilibrated myocyte culture medium (Eagle’s MEM w/HBSS
containing; 1 mg ml� 1 BSA, 10 mM BDM, 100 U ml� 1 penicillin-G, 2 mM
Glutamine, 5 mg ml� 1 insulin, 5 mg ml� 1 transferring and 5 ng ml� 1 selenium) for
24 h. Next, the medium was replaced with conditioned medium from ACFs culture.
To prepare the conditioned medium, ACFs isolated from WT or PMCA4� /� mice
were plated in cardiomyocyte maintenance medium for 24 h. The media were
collected and used to culture NRCM. Cells were then stimulated with pheny-
lephrine (30 mM) for 72 h with or without 0.2 mg ml� 1 anti-sFRP2 antibody
(Abcam) for 72 h. To specifically visualize cardiomyocytes, cells were stained with
anti-a-actinin antibody (Sigma). The cell size was then measured using ImageJ
software (NIH). The level of sFRP2 in the conditioned medium of WT or
PMCA4� /� ACFs was determined using ELISA (My BioSource) following the m
manufacturer’s protocol.

Intracellular calcium measurement. Intracellular calcium measurement was
carried out as described before24. Briefly, 104 ACFs were plated in BD Primaria
96-well plates and incubated at 37 �C for 24 h. The medium was replaced by 80 ml
of loading solution (5 mM Fluo-3 acetoxylmethylþ 0.1% Pluronic F.127 in HBSS
solution) and incubated at 37 �C for 30 min. Next, the medium was replaced by
100ml of fresh HBSS–BSA–probenecid solution (HBSS, 1% w/v BSA and 2.5 mM
probenecid) and were incubated for 30 min at 37 �C. Cells were then washed
with 100 ml of HBSS–BSA–probenecid and finally maintained in 80 ml of fresh
HBSS–BSA–probenecid containing 1.26 mM calcium chloride. Baseline
fluorescence (F) was measured for 3 min with filters for excitation at 485 nm and
for emission at 538 nm using a BMG FLUOstar Omega plate reader. Following
baseline fluorescence measurement, 14 ml of Fmin solution (HBSS–BSA–probenecid
pH 7.45, 100 mM ionomycin, 10mM Thapsigargin and 20 mM EGTA pH 8.0) was
added to each well, to deplete the calcium from the cells and leave only the
autofluorescence, which was measured for 120 min (Fmin). Finally, 16 ml of Fmax

(250 mM calcium chloride in HBSS–BSA–probenecid) solution was added to
saturate the cells with calcium and fluorescence was measured for another
5 min (Fmax).

Western blotting and immunofluorescence. Protein was extracted from
pelleted suspended or adherent cells through lysis in RIPA buffer (PBS

containing 1% IGEPAL CA-630, 0.5% sodium deoxycholate, 0.1% SDS, 0.5 mM
phenylmethylsulphonyl fluoride, 500 ng ml� 1 Leupeptin, 1 mg ml� 1 Aprotinin and
2.5 mg ml� 1 Pepstatin A). Harvested tissue stored at � 80 �C since collection was
cut into small pieces and homogenized in RIPA buffer in a dounce homogenizer.
Cellular debris was removed from protein extracts by centrifugation (3,000 r.p.m.
for 5 min at 4 �C) and the supernatant stored at � 80 �C. Protein concentration
was determined using a bicinchoninic acid assay kit (Pierce) as per the
manufacturer’s instructions.

Western blot analysis was conducted using a standard protocol. Proteins were
separated by SDS–PAGE using 8% gels, transferred to Immobilon-polyvinylidene
difluoride membrane (Millipore) and blocked in 4% BSA or 5% non-fat milk.
Primary antibodies used were: anti-PMCA4 (clone JA9) (Abcam; 1:1,000 for
western blotting, 1:100 for immunofluoresence), anti-DDR2 (Abcam; 1:100),
anti-sFRP2 (Abcam; 1:1,000), anti-active b-Catenin (Millipore; 1:500), anti-
GAPDH (Abcam; 1:5,000) anti-b-actin (Abcam; 1:5,000) and anti-a-tubulin
(Abcam; 1:5,000). We used horseradish peroxidase-labelled secondary antibodies
(Cell Signaling; 1:5,000) and detected signal using enhanced chemiluminescence
(GE Healthcare) in a ChemiDoc XRSþ Imaging System (Biorad). Full blots of
cropped images are provided in Supplementary Fig. 14.

For immunofluorescence, anti-a-actinin (Sigma; 1:100) and anti-phalloidin
(Molecular Probes; 1:100) antibody were used. We used Texas red or fluorescein
isothiocyanate-labelled secondary antibodies (Jackson ImmunoResearch) for visual
detection.

Histology. Heart tissues were fixed in 4% paraformaldehyde in PBS, embedded
in paraffin and sectioned at 5 mm thickness. Haematoxylin and eosin staining
and Masson’s trichrome stains were performed using standard procedures.
Cross-sectional cardiomyocyte size and percentage of interstitial fibrosis were
assessed in haematoxylin and eosin-, and Masson’s trichrome-stained sections,
respectively, using ImageJ software.

RNA isolation and real-time RT–PCR. Total RNA was prepared from freshly
isolated heart tissues or cultured ACFs using Trizol reagent (Invitrogen) following
the manufacturer’s instructions. We used the QuantiTect-SYBR Green RT–PCR
system (Qiagen) for real-time qRT–PCR analysis. Data were calculated using the
DDCt method and are presented as fold induction of target gene transcripts relative
to control group. Reactions were performed in an ABI 7500 Fast System (Applied
Biosystems). The following primers were purchased from Qiagen (Quantitect
Primer Assay system): ANP, Mm_LOC230899_1_SG; BNP, Mm_Nppb_1_SG;
SFRP2 Mm_Sfrp2_1_SG; TCF4, Mm_Tcf4_va.1_SG; Pax2, Mm_Pax2_1_SG; and
GAPDH, Mm_Gapdh_2_SG. Threshold cycle (Ct) values were determined by
using the Sequence Detection System software. GAPDH levels were used as a
reference.

Microarray analysis. RNA was obtained and pooled from three batches of
fibroblasts isolated either from PMCA4� /� or WT mice. We used three
independent RNA pools of each genotype isolated with Trizol (Invitrogen)
following the manufacturer’s instructions. All the following steps were conducted
by the genomics and bioinformatics core facilities at the University of Manchester
following their standard protocols. Briefly, we first assessed the purity of
RNA using an Agilent Bioanalyzer 2100 (Agilent Technologies). Cochlear
complementary RNA (cRNA) was prepared by sequentially generating
complementary DNA with the one-Cycle cDNA Synthesis Kit and used for
hybridization to MOE430A Genechips (Affymetrix) and then cRNA was purified
and used as a template for the in vitro transcription reaction for cRNA amplifi-
cation and biotin labelling. This was followed by hybridization to the GeneChip
arrays and scanned with a GeneChip Scanner 3000 7G–4C (Affymetrix). The
analysis was initially performed with MAS5.0 (Affymetrix) and Robust Multiarray
Average software45, which indicated high variability that was associated with the
biological variability and nonspecific hybridization. Further analysis was then
conducted using the software package PUMA (Propagating Uncertainty in
Microarray Analysis), to estimate the gene expression levels. To reduce the number
of false positives, the analysis of the fold change was used in combination with the
Probability of Positive Log Ratio (PPLR) algorithm from the PUMA package46.

Luciferase assay. The luciferase reporter for assessing b-catenin activity, which
contains TCF/LEF sites was a gift from Dr Randall Moon (Addgene plasmid
#12456)19. The reporter cassette containing NF-kB-binding sites was obtained
from Clontech. Constructs were cloned into the pAd-DEST Gateway vector
(Invitrogen), to produce adenoviruses expressing these reporter genes.

For luciferase assay, 7� 105 NRCMs were plated in 24-well plates in 1 ml
maintenance media for 24 h. Next, the media was changed with either maintenance
media or fibroblasts conditioned media. Adenovirus-encoding the TCF/LEF-
luciferase construct was added and cells were then stimulated with 30 mM
phenylephrine for 72 h. Luciferase assays were performed using luciferase assay
reagent (Promega) following manufacturer’s recommended protocol.

The NF-kB-luciferase reporter was used to examine NF-kB activity in cardiac
fibroblasts. In brief, 5� 104 ACFs were plated in 24-well plates for 24 h. Next, the
cells were infected with the NF-kB reporter adenovirus and incubated for 72 h at
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37 �C. Luciferase assays were performed using luciferase assay reagent (Promega)
following the manufacturer’s recommended protocol.

Whole-body phenotypic analysis. The study was performed on 12 male mice:
6 KOs and 6 control WTs. Phenotyping began when mice were 15 weeks of age.
Food consumption and body weight were monitored once a week between 16 and
21 weeks of age. Dysmorphology screen including body observation, physical
appearance and general behaviour was performed at 17 weeks of age. Blood
was collected by retro-orbital puncture after overnight fasting under isoflurane
anaesthesia at the age of 19 weeks for basic chemistry, blood lipid and haematology
analysis. At 20 weeks of age, indirect calorimetry was performed to evaluate energy
expenditure. At 21 weeks of age, blood was collected by retro-orbital puncture for
immunology (plasma IgG, IgA and IgM measurement) and enzymatic activities
analysis. Bone mineral density, body lean and fat content were evaluated by
Dexascan analysis at the age of 22 weeks. X-ray analysis was performed at the same
age. At 24 and 26 weeks of age, blood was collected by retro-orbital puncture for
metabolic and endocrine exploration. At the end of the study (30-week-old mice),
blood was collected by intra-cardiac puncture for coagulation tests.

Statistical analysis. Data are expressed as meanþ s.e.m. Student’s t-test or
one-way analysis of variance followed by post-hoc multiple comparison were used
where appropriate. The probability level for statistical significance was set at
Po0.05.
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