37 research outputs found

    Stressor- and Corticotropin releasing Factor-induced Reinstatement and Active Stress-related Behavioral Responses are Augmented Following Long-access Cocaine Self-administration by Rats

    Get PDF
    Rationale Stressful events during periods of drug abstinence likely contribute to relapse in cocaine-dependent individuals. Excessive cocaine use may increase susceptibility to stressor-induced relapse through alterations in brain corticotropin-releasing factor (CRF) responsiveness. Objectives This study examined stressor- and CRF-induced cocaine seeking and other stress-related behaviors in rats with different histories of cocaine self-administration (SA). Materials and methods Rats self-administered cocaine under short-access (ShA; 2 h daily) or long-access (LgA; 6 h daily) conditions for 14 days or were provided access to saline and were tested for reinstatement by a stressor (electric footshock), cocaine or an icv injection of CRF and for behavioral responsiveness on the elevated plus maze, in a novel environment and in the light–dark box after a 14- to 17-day extinction/withdrawal period. Results LgA rats showed escalating patterns of cocaine SA and were more susceptible to reinstatement by cocaine, EFS, or icv CRF than ShA rats. Overall, cocaine SA increased activity in the center field of a novel environment, on the open arms of the elevated plus maze, and in the light compartment of a light–dark box. In most cases, the effects of cocaine SA were dependent on the pattern/amount of cocaine intake with statistically significant differences from saline self-administering controls only observed in LgA rats. Conclusions When examined after several weeks of extinction/ withdrawal, cocaine SA promotes a more active pattern of behavior during times of stress that is associated with a heightened susceptibility to stressor-induced cocaine-seeking behavior and may be the consequence of augmented CRF regulation of addiction-related neurocircuitry

    Capsaicin-Induced Changes in LTP in the Lateral Amygdala Are Mediated by TRPV1

    Get PDF
    The transient receptor potential vanilloid type 1 (TRPV1) channel is a well recognized polymodal signal detector that is activated by painful stimuli such as capsaicin. Here, we show that TRPV1 is expressed in the lateral nucleus of the amygdala (LA). Despite the fact that the central amygdala displays the highest neuronal density, the highest density of TRPV1 labeled neurons was found within the nuclei of the basolateral complex of the amygdala. Capsaicin specifically changed the magnitude of long-term potentiation (LTP) in the LA in brain slices of mice depending on the anesthetic (ether, isoflurane) used before euthanasia. After ether anesthesia, capsaicin had a suppressive effect on LA-LTP both in patch clamp and in extracellular recordings. The capsaicin-induced reduction of LTP was completely blocked by the nitric oxide synthase (NOS) inhibitor L-NAME and was absent in neuronal NOS as well as in TRPV1 deficient mice. The specific antagonist of cannabinoid receptor type 1 (CB1), AM 251, was also able to reduce the inhibitory effect of capsaicin on LA-LTP, suggesting that stimulation of TRPV1 provokes the generation of anandamide in the brain which seems to inhibit NO synthesis. After isoflurane anesthesia before euthanasia capsaicin caused a TRPV1-mediated increase in the magnitude of LA-LTP. Therefore, our results also indicate that the appropriate choice of the anesthetics used is an important consideration when brain plasticity and the action of endovanilloids will be evaluated. In summary, our results demonstrate that TRPV1 may be involved in the amygdala control of learning mechanisms

    The Power of Peircean Algebraic Logic (PAL)

    No full text

    Connecting Systems of Mathematical Fuzzy Logic with Fuzzy Concept Lattices

    No full text
    In this paper our aim is to explore a new look at formal systems of fuzzy logics using the framework of (fuzzy) formal concept analysis (FCA). Let L be an extension of MTL complete with respect to a given L-chain. We investigate two possible approaches. The first one is to consider fuzzy formal contexts arising from L where attributes are identified with L-formulas and objects with L-evaluations: every Levaluation (object) satisfies a formula (attribute) to a given degree, and vice-versa. The corresponding fuzzy concept lattices are shown to be isomorphic to quotients of the Lindenbaum algebra of L. The second one, following an idea in a previous paper by two of the authors for the particular case of G\ua8odel fuzzy logic, is to use a result by Ganter and Wille in order to interpret the (lattice reduct of the) Lindenbaum algebra of L-formulas as a (classical) concept lattice of a given context

    Query Graphs with Cuts: Mathematical Foundations

    No full text
    Query graphs with cuts are inspired by Sowa’s conceptual graphs, which are in turn based on Peirce’s existential graphs. In my thesis ‘The Logic System of Concept Graphs with Negations’, conceptual graphs are elaborated mathematically, and the cuts of existential graphs are added to them. This yields the system of concept graphs with cuts. These graphs correspond to the closed formulas of first order predicate logic. Particularly, concept graphs are propositions which are evaluated to truth-values. In this paper, concept graphs are extended to so-called query graphs, which are evaluated to relations instead. As the truth-values TRUE and FALSE can be understood as the two 0-ary relations, query graphs extend the expressiveness of concept graphs. Query graphs can be used to elaborate the logic of relations. In this sense, they bridge the gap between concept graphs and the Peircean Algebraic Logic, as it is described in Burch’s book ’A Peircean Reduction Thesis’. But in this paper, we focus on deduction procedures on query graphs, instead of operations on relations, which is the focus in PAL. Particularly, it is investigated how the adequate calculus of concept graphs can be transferred to query graphs
    corecore