50 research outputs found
Planetary Radio Interferometry and Doppler Experiment (PRIDE) Technique: a Test Case of the Mars Express Phobos Fly-by. 2. Doppler tracking: Formulation of observed and computed values, and noise budget
Context. Closed-loop Doppler data obtained by deep space tracking networks
(e.g., NASA's DSN and ESA's Estrack) are routinely used for navigation and
science applications. By "shadow tracking" the spacecraft signal, Earth-based
radio telescopes involved in Planetary Radio Interferometry and Doppler
Experiment (PRIDE) can provide open-loop Doppler tracking data when the
dedicated deep space tracking facilities are operating in closed-loop mode
only. Aims. We explain in detail the data processing pipeline, discuss the
capabilities of the technique and its potential applications in planetary
science. Methods. We provide the formulation of the observed and computed
values of the Doppler data in PRIDE tracking of spacecraft, and demonstrate the
quality of the results using as a test case an experiment with ESA's Mars
Express spacecraft. Results. We find that the Doppler residuals and the
corresponding noise budget of the open-loop Doppler detections obtained with
the PRIDE stations are comparable to the closed-loop Doppler detections
obtained with the dedicated deep space tracking facilities
Radiative transfer effects in primordial hydrogen recombination
The calculation of a highly accurate cosmological recombination history has
been the object of particular attention recently, as it constitutes the major
theoretical uncertainty when predicting the angular power spectrum of Cosmic
Microwave Background anisotropies. Lyman transitions, in particular the
Lyman-alpha line, have long been recognized as one of the bottlenecks of
recombination, due to their very low escape probabilities. The Sobolev
approximation does not describe radiative transfer in the vicinity of Lyman
lines to a sufficient degree of accuracy, and several corrections have already
been computed in other works. In this paper, the impact of some previously
ignored radiative transfer effects is calculated. First, the effect of Thomson
scattering in the vicinity of the Lyman-alpha line is evaluated, using a full
redistribution kernel incorporated into a radiative transfer code. The effect
of feedback of distortions generated by the optically thick deuterium
Lyman-alpha line blueward of the hydrogen line is investigated with an analytic
approximation. It is shown that both effects are negligible during cosmological
hydrogen recombination. Secondly, the importance of high-lying, non overlapping
Lyman transitions is assessed. It is shown that escape from lines above
Ly-gamma and frequency diffusion in Ly-beta and higher lines can be neglected
without loss of accuracy. Thirdly, a formalism generalizing the Sobolev
approximation is developed to account for the overlap of the high-lying Lyman
lines, which is shown to lead to negligible changes to the recombination
history. Finally, the possibility of a cosmological hydrogen recombination
maser is investigated. It is shown that there is no such maser in the purely
radiative treatment presented here.Comment: 23 pages, 4 figures, to be submitted to PR
The SFXC software correlator for Very Long Baseline Interferometry: Algorithms and Implementation
In this paper a description is given of the SFXC software correlator,
developed and maintained at the Joint Institute for VLBI in Europe (JIVE). The
software is designed to run on generic Linux-based computing clusters. The
correlation algorithm is explained in detail, as are some of the novel modes
that software correlation has enabled, such as wide-field VLBI imaging through
the use of multiple phase centres and pulsar gating and binning. This is
followed by an overview of the software architecture. Finally, the performance
of the correlator as a function of number of CPU cores, telescopes and spectral
channels is shown.Comment: Accepted by Experimental Astronom
Venus Express radio occultation observed by PRIDE
Context. Radio occultation is a technique used to study planetary atmospheres
by means of the refraction and absorption of a spacecraft carrier signal
through the atmosphere of the celestial body of interest, as detected from a
ground station on Earth. This technique is usually employed by the deep space
tracking and communication facilities (e.g., NASA's Deep Space Network (DSN),
ESA's Estrack). Aims. We want to characterize the capabilities of the Planetary
Radio Interferometry and Doppler Experiment (PRIDE) technique for radio
occultation experiments, using radio telescopes equipped with Very Long
Baseline Interferometry (VLBI) instrumentation. Methods. We conducted a test
with ESA's Venus Express (VEX), to evaluate the performance of the PRIDE
technique for this particular application. We explain in detail the data
processing pipeline of radio occultation experiments with PRIDE, based on the
collection of so-called open-loop Doppler data with VLBI stations, and perform
an error propagation analysis of the technique. Results. With the VEX test case
and the corresponding error analysis, we have demonstrated that the PRIDE setup
and processing pipeline is suited for radio occultation experiments of
planetary bodies. The noise budget of the open-loop Doppler data collected with
PRIDE indicated that the uncertainties in the derived density and temperature
profiles remain within the range of uncertainties reported in previous Venus'
studies. Open-loop Doppler data can probe deeper layers of thick atmospheres,
such as that of Venus, when compared to closed-loop Doppler data. Furthermore,
PRIDE through the VLBI networks around the world, provides a wide coverage and
range of large antenna dishes, that can be used for this type of experiments
Position and frequency shifts induced by massive modes of the gravitational wave background in alternative gravity
Alternative theories of gravity predict the presence of massive scalar,
vector, and tensor gravitational wave modes in addition to the standard
massless spin~2 graviton of general relativity. The deflection and frequency
shift effects on light from distant sources propagating through a stochastic
background of gravitational waves, containing such modes, differ from their
counterparts in general relativity. Such effects are considered as a possible
signature for alternative gravity in attempts to detect deviations from
Einstein's gravity by astrophysical means.Comment: 9 pages, 1 figur
A monitoring campaign (2013-2020) of ESA's Mars Express to study interplanetary plasma scintillation
The radio signal transmitted by the Mars Express (MEX) spacecraft was
observed regularly between the years 2013-2020 at X-band (8.42 GHz) using the
European Very Long Baseline Interferometry (EVN) network and University of
Tasmania's telescopes. We present a method to describe the solar wind
parameters by quantifying the effects of plasma on our radio signal. In doing
so, we identify all the uncompensated effects on the radio signal and see which
coronal processes drive them. From a technical standpoint, quantifying the
effect of the plasma on the radio signal helps phase referencing for precision
spacecraft tracking. The phase fluctuation of the signal was determined for
Mars' orbit for solar elongation angles from 0 - 180 deg. The calculated phase
residuals allow determination of the phase power spectrum. The total electron
content (TEC) of the solar plasma along the line of sight is calculated by
removing effects from mechanical and ionospheric noises. The spectral index was
determined as which is in agreement with Kolomogorov's
turbulence. The theoretical models are consistent with observations at lower
solar elongations however at higher solar elongation (160 deg) we see the
observed values to be higher. This can be caused when the uplink and downlink
signals are positively correlated as a result of passing through identical
plasma sheets.Comment: The paper has 13 figures and one table. It has been accepted for
publication in PASA and the article will receive its DOI in a week's tim
Very long baseline interferometry with the SKA
Adding VLBI capability to the SKA arrays will greatly broaden the science of the SKA, and is feasible within the current specifications. SKA-VLBI can be initially implemented by providing phased-array outputs for SKA1-MID and SKA1-SUR and using these extremely sensitive stations with other radio telescopes, and in SKA2 by realising a distributed configuration providing baselines up to thousands of km, merging it with existing VLBI networks. The motivation for and the possible realization of SKA-VLBI is described in this paper