95 research outputs found

    Speeding up shortest path algorithms

    Full text link
    Given an arbitrary, non-negatively weighted, directed graph G=(V,E)G=(V,E) we present an algorithm that computes all pairs shortest paths in time O(m∗n+mlg⁡n+nTψ(m∗,n))\mathcal{O}(m^* n + m \lg n + nT_\psi(m^*, n)), where m∗m^* is the number of different edges contained in shortest paths and Tψ(m∗,n)T_\psi(m^*, n) is a running time of an algorithm to solve a single-source shortest path problem (SSSP). This is a substantial improvement over a trivial nn times application of ψ\psi that runs in O(nTψ(m,n))\mathcal{O}(nT_\psi(m,n)). In our algorithm we use ψ\psi as a black box and hence any improvement on ψ\psi results also in improvement of our algorithm. Furthermore, a combination of our method, Johnson's reweighting technique and topological sorting results in an O(m∗n+mlg⁡n)\mathcal{O}(m^*n + m \lg n) all-pairs shortest path algorithm for arbitrarily-weighted directed acyclic graphs. In addition, we also point out a connection between the complexity of a certain sorting problem defined on shortest paths and SSSP.Comment: 10 page

    Improved bounds and new techniques for Davenport-Schinzel sequences and their generalizations

    Full text link
    Let lambda_s(n) denote the maximum length of a Davenport-Schinzel sequence of order s on n symbols. For s=3 it is known that lambda_3(n) = Theta(n alpha(n)) (Hart and Sharir, 1986). For general s>=4 there are almost-tight upper and lower bounds, both of the form n * 2^poly(alpha(n)) (Agarwal, Sharir, and Shor, 1989). Our first result is an improvement of the upper-bound technique of Agarwal et al. We obtain improved upper bounds for s>=6, which are tight for even s up to lower-order terms in the exponent. More importantly, we also present a new technique for deriving upper bounds for lambda_s(n). With this new technique we: (1) re-derive the upper bound of lambda_3(n) <= 2n alpha(n) + O(n sqrt alpha(n)) (first shown by Klazar, 1999); (2) re-derive our own new upper bounds for general s; and (3) obtain improved upper bounds for the generalized Davenport-Schinzel sequences considered by Adamec, Klazar, and Valtr (1992). Regarding lower bounds, we show that lambda_3(n) >= 2n alpha(n) - O(n), and therefore, the coefficient 2 is tight. We also present a simpler version of the construction of Agarwal, Sharir, and Shor that achieves the known lower bounds for even s>=4.Comment: To appear in Journal of the ACM. 48 pages, 3 figure

    Linear Programming in the Semi-streaming Model with Application to the Maximum Matching Problem

    Get PDF
    In this paper, we study linear programming based approaches to the maximum matching problem in the semi-streaming model. The semi-streaming model has gained attention as a model for processing massive graphs as the importance of such graphs has increased. This is a model where edges are streamed-in in an adversarial order and we are allowed a space proportional to the number of vertices in a graph. In recent years, there has been several new results in this semi-streaming model. However broad techniques such as linear programming have not been adapted to this model. We present several techniques to adapt and optimize linear programming based approaches in the semi-streaming model with an application to the maximum matching problem. As a consequence, we improve (almost) all previous results on this problem, and also prove new results on interesting variants

    Effective Edge-Fault-Tolerant Single-Source Spanners via Best (or Good) Swap Edges

    Full text link
    Computing \emph{all best swap edges} (ABSE) of a spanning tree TT of a given nn-vertex and mm-edge undirected and weighted graph GG means to select, for each edge ee of TT, a corresponding non-tree edge ff, in such a way that the tree obtained by replacing ee with ff enjoys some optimality criterion (which is naturally defined according to some objective function originally addressed by TT). Solving efficiently an ABSE problem is by now a classic algorithmic issue, since it conveys a very successful way of coping with a (transient) \emph{edge failure} in tree-based communication networks: just replace the failing edge with its respective swap edge, so as that the connectivity is promptly reestablished by minimizing the rerouting and set-up costs. In this paper, we solve the ABSE problem for the case in which TT is a \emph{single-source shortest-path tree} of GG, and our two selected swap criteria aim to minimize either the \emph{maximum} or the \emph{average stretch} in the swap tree of all the paths emanating from the source. Having these criteria in mind, the obtained structures can then be reviewed as \emph{edge-fault-tolerant single-source spanners}. For them, we propose two efficient algorithms running in O(mn+n2log⁥n)O(m n +n^2 \log n) and O(mnlog⁥ι(m,n))O(m n \log \alpha(m,n)) time, respectively, and we show that the guaranteed (either maximum or average, respectively) stretch factor is equal to 3, and this is tight. Moreover, for the maximum stretch, we also propose an almost linear O(mlog⁥ι(m,n))O(m \log \alpha(m,n)) time algorithm computing a set of \emph{good} swap edges, each of which will guarantee a relative approximation factor on the maximum stretch of 3/23/2 (tight) as opposed to that provided by the corresponding BSE. Surprisingly, no previous results were known for these two very natural swap problems.Comment: 15 pages, 4 figures, SIROCCO 201

    Almost optimal exact distance oracles for planar graphs

    Get PDF
    We consider the problem of preprocessing a weighted directed planar graph in order to quickly answer exact distance queries. The main tension in this problem is between space S and query time Q, and since the mid-1990s all results had polynomial time-space tradeoffs, e.g., Q = ~ Θ(n/√ S) or Q = ~Θ(n5/2/S3/2). In this article we show that there is no polynomial tradeoff between time and space and that it is possible to simultaneously achieve almost optimal space n1+o(1) and almost optimal query time no(1). More precisely, we achieve the following space-time tradeoffs: n1+o(1) space and log2+o(1) n query time, n log2+o(1) n space and no(1) query time, n4/3+o(1) space and log1+o(1) n query time. We reduce a distance query to a variety of point location problems in additively weighted Voronoi diagrams and develop new algorithms for the point location problem itself using several partially persistent dynamic tree data structures

    Recommendations to encourage participation of individuals from diverse backgrounds in psychiatric genetic studies

    Get PDF
    We present innovative research practices in psychiatric genetic studies to ensure representation of individuals from diverse ancestry, sex assigned at birth, gender identity, age, body shape and size, and socioeconomic backgrounds. Due to histories of inappropriate and harmful practices against marginalized groups in both psychiatry and genetics, people of certain identities may be hesitant to participate in research studies. Yet their participation is essential to ensure diverse representation, as it is incorrect to assume that the same genetic and environmental factors influence the risk for various psychiatric disorders across all demographic groups. We present approaches developed as part of the Eating Disorders Genetics Initiative (EDGI), a study that required tailored approaches to recruit diverse populations across many countries. Considerations include research priorities and design, recruitment and study branding, transparency, and community investment and ownership. Ensuring representation in participants is costly and funders need to provide adequate support to achieve diversity in recruitment in prime awards, not just as supplemental afterthoughts. The need for diverse samples in genetic studies is critical to minimize the risk of perpetuating health disparities in psychiatry and other health research. Although the EDGI strategies were designed specifically to attract and enroll individuals with eating disorders, our approach is broadly applicable across psychiatry and other fields

    Recent Advances in Graph Partitioning

    Full text link
    We survey recent trends in practical algorithms for balanced graph partitioning together with applications and future research directions
    • …
    corecore