
BIROn - Birkbeck Institutional Research Online

Charalampopoulos, Panagiotis and Gawrychowski, P. and Long, Y. and
Mozes, S. and Pettie, S. and Weimann, O. and Wulff-Nilsen, C. (2023) Almost
optimal exact distance oracles for planar graphs. Journal of the ACM 70 (2),
pp. 1-50. ISSN 0004-5411.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/50932/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/50932/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

12

Almost Optimal Exact Distance Oracles for Planar Graphs
PANAGIOTIS CHARALAMPOPOULOS, Birkbeck, University of London, UK

PAWEŁ GAWRYCHOWSKI, University of Wrocław, Poland

YAOWEI LONG, Tsinghua University, China
SHAY MOZES, Reichmann University, Israel

SETH PETTIE, University of Michigan, USA

OREN WEIMANN, University of Haifa, Israel

CHRISTIAN WULFF-NILSEN, University of Copenhagen, Denmark

We consider the problem of preprocessing a weighted directed planar graph in order to quickly answer

exact distance queries. The main tension in this problem is between space 𝑆 and query time 𝑄 , and since the

mid-1990s all results had polynomial time-space tradeoffs, e.g., 𝑄 = Θ̃(𝑛/
√
𝑆) or 𝑄 = Θ̃(𝑛5/2/𝑆3/2).

In this paper we show that there is no polynomial tradeoff between time and space and that it is possible to

simultaneously achieve almost optimal space 𝑛1+𝑜 (1) and almost optimal query time 𝑛𝑜 (1) . More precisely, we

achieve the following space-time tradeoffs:

𝑛1+𝑜 (1) space and log
2+𝑜 (1) 𝑛 query time,

𝑛 log2+𝑜 (1) 𝑛 space and 𝑛𝑜 (1) query time,

𝑛4/3+𝑜 (1) space and log
1+𝑜 (1) 𝑛 query time.

We reduce a distance query to a variety of point location problems in additively weighted Voronoi diagrams,
and develop new algorithms for the point location problem itself using several partially persistent dynamic

tree data structures.

CCS Concepts: • Theory of computation→ Data structures design and analysis; Shortest paths.

Additional KeyWords and Phrases: planar graphs, Voronoi diagrams, distance oracles, persistent data structures

ACM Reference Format:
Panagiotis Charalampopoulos, Paweł Gawrychowski, Yaowei Long, Shay Mozes, Seth Pettie, Oren Weimann,

and Christian Wulff-Nilsen. 2023. Almost Optimal Exact Distance Oracles for Planar Graphs. J. ACM 70, 2,

Article 12 (March 2023), 51 pages. https://doi.org/https://doi.org/10.1145/3580474

This paper is derived from extended abstracts presented at SODA’18 [32], STOC’19 [14], and SODA’21 [50]. This work was

supported by NSF grants CCF-1637546 and CCF-1815316, a grant from IIIS, Tsinghua University, Israel Science Foundation

grants 592/17 and 810/21, and the Starting Grant 7027-00050B from the Independent Research Fund Denmark under the

Sapere Aude research career programme.

Authors’ addresses: Panagiotis Charalampopoulos, p.charalampopoulos@bbk.ac.uk, Birkbeck, University of London, De-

partment of Computer Science and Information Systems, Malet Street, London, UK, WC1E 7HX; Paweł Gawrychowski,

gawry@cs.uni.wroc.pl, University of Wrocław, Instytut Informatyki, Uniwersytetu Wrocławskiego, ul. Joliot-Curie 15,

Wrocław, Poland, 50-383; Yaowei Long, yaoweil@umich.edu, Tsinghua University, Institute for Interdisciplinary Information

Sciences, Beijing, China, 100084; Shay Mozes, smozes@idc.ac.il, Reichmann University, Efi Arazi School of Computer

Sciencee, 167, Herzliya, Israel, 4610101; Seth Pettie, pettie@umich.edu, University of Michigan, Computer Science and

Engineering, 2260 Hayward St., Ann Arbor, Michigan, USA, 48109; Oren Weimann, oren@cs.haifa.ac.il, University of Haifa,

Department of Computer Science, Ha-Namal St. 67, Haifa, Haifa, Israel, 3303221; Christian Wulff-Nilsen, koolooz@di.ku.dk,

University of Copenhagen, BARC, Department of Computer Science, Universitetsparken 1, Copenhagen, Denmark, DK-2100.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

0004-5411/2023/3-ART12 $15.00

https://doi.org/https://doi.org/10.1145/3580474

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

HTTPS://ORCID.ORG/0000-0002-6024-1557
HTTPS://ORCID.ORG/0000-0002-6993-5440
HTTPS://ORCID.ORG/0000-0002-1891-9897
HTTPS://ORCID.ORG/0000-0001-9262-1821
HTTPS://ORCID.ORG/0000-0002-0495-3904
HTTPS://ORCID.ORG/0000-0002-4510-7552
HTTPS://ORCID.ORG/0000-0002-3699-7821
https://doi.org/https://doi.org/10.1145/3580474
https://orcid.org/0000-0002-6024-1557
https://orcid.org/0000-0002-6993-5440
https://orcid.org/0000-0002-1891-9897
https://orcid.org/0000-0001-9262-1821
https://orcid.org/0000-0002-0495-3904
https://orcid.org/0000-0002-4510-7552
https://orcid.org/0000-0002-3699-7821
https://doi.org/https://doi.org/10.1145/3580474

12:2 Charalampopoulos et al.

1 INTRODUCTION
A distance oracle is a data structure that gives oracle access to the pairwise distance function

dist𝐺 (·, ·) with respect to some graph𝐺 . There are two trivial solutions to this problem: store dist𝐺

explicitly in Θ(𝑛2) space, or store the graph itself and answer queries in Ω(𝑚) time. The goal is to

achieve a time-space tradeoff that approaches the constant query time of the first trivial scheme

and the linear space of the second.

On general graphs 𝐺 it seems that incorporating approximation into the distance estimates is

necessary to get an attractive space-time tradeoff. There are approximate distance oracles for

undirected graphs [18, 64] that trade space 𝑂 (𝑛1+1/𝑘) against multiplicative approximation 2𝑘 − 1,
with optimal 𝑂 (1) query time. Others [1, 58] pit space against a mix of multiplicative and additive

approximation, or in sparse graphs [2, 61], space against query time. Refer to Sommer [60] for a

survey on distance oracles.

When 𝐺 is known to come from a structured class of graphs we can aspire to find exact distance
oracles with attractive space-time tradeoffs. In this paper we develop new distance oracles for

weighted, directed planar graphs. This problem has been studied for 25 years in both the exact [3,

9, 14, 19, 20, 24, 28, 32, 45, 54, 56, 67] and the approximate [13, 34, 42–44, 63, 68] settings. Our

oracles are the first exact oracles to simultaneously achieve almost optimal space 𝑛1+𝑜 (1) and almost

optimal query time 𝑛𝑜 (1) . Theorem 1.1 provides a fine-grained tradeoff between space and query

time.

4/3 23/2 5/31

1/4
1/3

1/2

1

0

log 𝑆/log𝑛

log𝑄

log𝑛

F
O
C
S
’0
1
[
2
8
]

W
G
’9
6
[2
4
]

E
S
A
’9
6
[3
]

W
G’96

[24]

STO
C’00

[19]
SO

DA’06
[9]

F
O
C
S
’1
7
[
2
0
]

SO
DA’12

[54]

S
O
D
A
’1
8
[3
2
]

Our result

Fig. 1. Tradeoff of the space (𝑆) vs. the query time (𝑄) for exact distance oracles in planar graphs on a doubly
logarithmic scale, hiding subpolynomial factors. The previous tradeoffs are indicated by solid black lines and
points, while our new tradeoff is indicated by the red point.

1.1 History of Planar Distance Oracles
The planar distance oracle problem was introduced in 1996 by Arikati et al. [3] and Djidjev [24]. The

main technical tool used in the early planar distance oracles [3, 19, 24] is Lipton and Tarjan’s planar

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:3

separator theorem [49], and its refinements by Miller [52] and Frederickson [29]. Let the query

time and the space of an oracle be denoted by 𝑄 and 𝑆 , respectively. The early oracles achieved a

space-query tradeoff of 𝑄 = 𝑂̃ (𝑛/
√
𝑆) for 𝑆 ∈ [𝑛4/3, 𝑛2], but a weaker tradeoff of 𝑄 = 𝑂 (𝑛2/𝑆) for

𝑆 ∈ [𝑛, 𝑛4/3).
In a very influential paper Fakcharoenphol and Rao [28] introduced Monge matrices to planar

graph algorithms, and devised a distance oracle with 𝑂̃ (𝑛) space and 𝑂̃ (
√
𝑛) query time, i.e., they

added an additional point to the general𝑄 = 𝑂̃ (𝑛/
√
𝑆) tradeoff. Eventually, Mozes and Sommer [54]

extended this tradeoff to nearly the full range [𝑛 log log𝑛, 𝑛2], using [28] and ideas from Klein’s [44]

multiple source shortest path (MSSP) data structure.
Thework of [30, 54, 56, 67] focussed on achieving optimal time or space, at the expense of the other

measure. Wulff-Nilsen’s [67] distance oracle occupies subquadratic space 𝑂 (𝑛2 log4 log𝑛/log𝑛)
and answers queries in optimal 𝑂 (1) time, whereas Nussbaum [56] and Mozes and Sommer’s [54]

distance oracle occupies optimal𝑂 (𝑛) space and answers distance queries in𝑂 (𝑛1/2+𝜖) time, for any

𝜖 > 0. On undirected, unweighted planar graphs, the recent distance oracle of Fredslund-Hansen,

Mozes, and Wulff-Nilsen [30] occupies 𝑂 (𝑛5/3+𝜖) space and answers queries in 𝑂 (log(1/𝜖)) time

for any 𝜖 > 0.

In 2017 Cabello [10] introduced a new idea, additively weighted planar Voronoi diagrams,1 and
used them to solve problems concerning planar metrics (diameter, sum-of-distances) in strongly

subquadratic time. Inspired by this idea, Cohen-Addad, Dahlgaard, and Wulff-Nilsen [20] realized

that Voronoi diagrams can be used to obtain the first exact distance oracle for planar graphs with

subquadratic space and polylogarithmic query time. The Voronoi diagram based oracle in their

breakthrough paper has a space-time tradeoff of 𝑄 = 𝑂̃ (𝑛5/2/𝑆3/2) for 𝑆 ∈ [𝑛3/2, 𝑛5/3].
All of the distance oracles cited above report exact distances. Thorup [63] proved that on non-

negatively weighted planar graphs, (1 + 𝜖)-approximate distances can be reported in 𝑂 (𝜖−1 +
log log𝑛) time by an oracle of space 𝑂 (𝑛𝜖−1 log2 𝑛). Refer to [13, 34, 42–44, 48, 68] for other space-

time-approximation tradeoffs on undirected planar graphs and to [48] for an improved tradeoff on

directed planar graphs. See Table 1.

1.2 New Results
In this paper we show that there is no polynomial tradeoff between space and query time, and that

near-optimality in both measures can be achieved simultaneously: with 𝑛1+𝑜 (1) space exact distance
queries can be answered in 𝑛𝑜 (1) query time. Our main distance oracle (Theorem 1.1) does have a

space-time tradeoff, the extremes of which let us achieve either 𝑂̃ (𝑛) space or 𝑂̃ (1) query time but

not both.

Theorem 1.1. Let 𝐺 be an 𝑛-vertex weighted planar digraph with no negative cycles, and let
𝜅,𝑚 ≥ 1 be parameters. A distance oracle occupying space 𝑂 (𝑚𝜅𝑛1+1/𝑚+1/𝜅) can be constructed in
𝑂̃ (𝑛3/2+1/𝑚 +𝑛1+1/𝑚+1/𝜅) time to answer exact distance queries in𝑂 (2𝑚𝜅 log2 𝑛 log log𝑛) time. At the
two extremes of the space-time tradeoff curve, we can construct oracles in 𝑛3/2+𝑜 (1) time with either

• 𝑛1+𝑜 (1) space and log2+𝑜 (1) 𝑛 query time, or
• 𝑛 log2+𝑜 (1) 𝑛 space and 𝑛𝑜 (1) query time.

At a high level, Theorem 1.1 reduces a distance query dist𝐺 (𝑢, 𝑣) to a series of point location
problems in additively weighted planar Voronoi diagrams.We compute an𝑚-level ®𝑟 -division [29, 46]
where regions on level 𝑖 have𝑂 (𝑛𝑖/𝑚) vertices and𝑂 (

√
𝑛𝑖/𝑚) boundary vertices (vertices shared by

other regions). In the course of answering a distance query dist𝐺 (𝑢, 𝑣) we find (𝑢1, 𝑢2, . . .), where 𝑢𝑖
1
Voronoi diagrams have also been used for facility location problems in planar graphs [51].

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:4 Charalampopoulos et al.

Exact Oracles Space Query Time

Arikati, Chen, Chew

Das, Smid & Zaroliagis
1996 𝑆 ∈ [𝑛3/2, 𝑛2] 𝑂

(
𝑛2

𝑆

)
Djidjev 1996

𝑆 ∈ [𝑛, 𝑛2] 𝑂

(
𝑛2

𝑆

)
𝑆 ∈ [𝑛4/3, 𝑛3/2] 𝑂

(
𝑛√
𝑆
log𝑛

)
Chen & Xu 2000 𝑆 ∈ [𝑛4/3, 𝑛2] 𝑂

(
𝑛√
𝑆
log

(
𝑛√
𝑆

))
Fakcharoenphol & Rao 2006 𝑂 (𝑛 log𝑛) 𝑂 (

√
𝑛 log2 𝑛)

Wulff-Nilsen 2010 𝑂 (𝑛2 log
4
log𝑛

log𝑛
) 𝑂 (1)

Nussbaum 2011

𝑂 (𝑛) 𝑂 (𝑛1/2+𝜖)

𝑆 ∈ [𝑛4/3, 𝑛2] 𝑂

(
𝑛√
𝑆

)
Mozes & Sommer 2012

𝑆 ∈ [𝑛 log log𝑛, 𝑛2] 𝑂

(
𝑛√
𝑆
log

2 𝑛 log3/2 log𝑛
)

𝑂 (𝑛) 𝑂 (𝑛1/2+𝜖)
Cohen-Addad, Dahlgaard

& Wulff-Nilsen

2017 𝑆 ∈ [𝑛3/2, 𝑛5/3] 𝑂

(
𝑛5/2

𝑆3/2
log𝑛

)
Gawrychowski, Mozes

Weimann & Wulff-Nilsen

2018

𝑂 (𝑛3/2) 𝑂 (log𝑛)

𝑆 ∈ [𝑛, 𝑛3/2] 𝑂

(
𝑛3/2

𝑆
log

2 𝑛

)
Fredslund-Hansen, Mozes

& Wulff-Nilsen

2020 𝑂 (𝑛5/3+𝜖) log(1/𝜖) (Undir.,Unweight.)

new

𝑛1+𝑜 (1) log
2+𝑜 (1) 𝑛 Theorem 1.1

𝑛 log2+𝑜 (1) 𝑛 𝑛𝑜 (1) Theorem 1.1

𝑂 (𝑛4/3 log1/3 𝑛) 𝑂 (log2 𝑛) Theorem 4.1

𝑛4/3+𝑜 (1) log
1+𝑜 (1) 𝑛 Theorem 4.1

(1 + 𝜖)-Approx. Oracles Space Query Time

Thorup 2001

𝑂 (𝑛𝜖−1 log2 𝑛) 𝑂 (log log𝑛 + 𝜖−1)

𝑂 (𝑛𝜖−1 log𝑛) 𝑂 (𝜖−1) (Undir.)

Klein 2002 𝑂 (𝑛(log𝑛 + 𝜖−1 log 𝜖−1)) 𝑂 (𝜖−1) (Undir.)

Kawarabayashi,

Klein & Sommer

2011 𝑂 (𝑛) 𝑂 (𝜖−2 log2 𝑛) (Undir.)

Kawarabayashi,

Sommer & Thorup
2013

𝑂 (𝑛 log𝑛) 𝑂 (𝜖−1) (Undir.)

𝑂 (𝑛) 𝑂 (𝜖−1) (Undir.,Unweight.)

Gu & Xu 2015 𝑂 (𝑛 log𝑛(𝜖−1 log𝑛 + 2𝑂 (1/𝜖))) 𝑂 (1) (Undir.)

Wulff-Nilsen 2016 𝑂 (𝑛𝜖−2) 𝑂 (𝜖−2) (Undir.)

Chan & Skrepetos 2019 𝑂 (𝑛 log𝑛(𝜖−1 log𝑛 + 𝜖−4−𝛿)) 𝑂 (1) (Undir.)

Le & Wulff-Nilsen 2021 𝑂 (𝑛𝜖−2) 𝑂 (𝜖−2) (Undir.)

Le & Wulff-Nilsen 2021 𝑜 (𝑛𝜖−1 log𝑛) 𝑂 (log log𝑛 + 𝜖−5.01)

Table 1. Space-query time tradeoffs for exact and approximate planar distance oracles. All exact distance
oracles apply to weighted, directed graphs without negative cycles. Approximate distance oracles apply
to non-negatively weighted graphs; some are restricted to undirected and/or unweighted graphs. 𝑂 hides
log(𝜖−1 log𝑛) factors. The bounds for approximate distance oracles in directed planar graphs assume that
the ratio between the largest and smallest edge weights is polynomial in 𝑛.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:5

is the last vertex of the shortest 𝑢-to-𝑣 path lying on the boundary of a level-𝑖 region that contains

𝑢.

Theorem 3.2 proves that the point location problem itself is reducible to 𝑂 (log𝑛) distance-type
queries

2
via a kind of binary search. We employ two strategies for answering these distance-type

queries. The first is to store many MSSP structures for various subgraphs. This is time-efficient but

requires space linear in the size of these subgraphs. The second is to use recursion. Specifically,

given (𝑢1, . . . , 𝑢𝑖), we can narrow the number of possibilities for 𝑢𝑖+1 down to two candidates 𝑠1, 𝑠2
in 𝑂̃ (1) time via point location queries that are solved without recursion. We determine which of

these two sites actually is 𝑢𝑖+1 with two recursive calls to compute dist(𝑠1, 𝑣) and dist(𝑠2, 𝑣). This
branching process leads to a query time 𝑂̃ (2𝑚) that depends exponentially on𝑚, whereas the space

of the data structure is about 𝑂̃ (𝑛1+1/𝑚). Thus, by setting𝑚 appropriately we can achieve 𝑂̃ (1)
query time and 𝑛1+𝑜 (1) space or 𝑛𝑜 (1) query time and 𝑂̃ (𝑛) space.
Using existingMSSP structures [44] the query time would be 𝑂 (2𝑚 log

3 𝑛). We develop a new

MSSP data structure based on Euler-tour trees [38] and partially persistent arrays [21] that may be of

independent interest. It uses 𝑂 (𝜅𝑛1+1/𝜅) space and answers distance-type queries in 𝑂 (𝜅 log log𝑛)
time, for any parameter 𝜅 ≥ 1. The first tradeoff of Theorem 1.1 (minimizing query time) is obtained

by setting both 𝜅,𝑚 to be 𝜔 (1) and 𝑜 (log log𝑛).
In Theorem 4.1 we describe a simpler distance oracle that achieves different space-time tradeoffs,

namely 𝑂̃ (𝑛4/3) space and 𝑂 (log2 𝑛) query time, or 𝑛4/3+𝑜 (1) space and log
1+𝑜 (1) 𝑛 query time.

Finally, we complement our almost optimal distance oracle with an efficient preprocessing

algorithm that runs in 𝑛3/2+𝑜 (1) time. In particular, we show an efficient algorithm for computing

Voronoi diagrams in planar graphs, which we believe is of independent interest.

Provenance of the Paper. This paper is derived from three extended abstracts. The first [31], which

appeared in SODA 2018, characterized the tree structure of the dual representation of Voronoi

diagrams, and developed the point location mechanism described in Section 3. The distance oracle

of [31] achieved a tradeoff of 𝑄 = 𝑂̃ (𝑛3/2/𝑆) for 𝑆 ∈ [𝑛, 𝑛3/2], which is completely subsumed

by Theorem 1.1. Therefore, it is not described in this paper. The second paper [14], which appeared

in STOC 2019, observed that the same point location mechanism can be used in an external Voronoi
diagram, i.e., the Voronoi diagram for the complement of a region in an 𝑟 -division. Furthermore, it

developed the recursive query structure using𝑚-level ®𝑟 -divisions. A query at level 𝑖 of the recursion

reduces to 𝑂 (log𝑛) queries at level 𝑖 + 1. Thus, the query time in [14] is proportional to (log𝑛)𝑚
rather than to 2

𝑚
as in Theorem 1.1. The resulting distance oracle of [14] achieved 𝑛1+𝑜 (1) space

and 𝑛𝑜 (1) query-time. The third paper [50], which appeared in SODA 2021, modified and extended

the point location mechanism. It showed that, by using appropriate persistent data structures

and further exploiting planarity, much of the point location work can be done efficiently without

recursion, and that only two recursive calls at a higher level suffice. TheMSSP data structure based

on Euler-tour trees was also introduced in [50].

1.3 Organization
In Section 2 we review background on planar embeddings, planar separators, and multiple-source

shortest paths (MSSP). In Section 3 we review additively weighted Voronoi diagrams, and prove

that the point location problem is reducible to 𝑂 (log𝑛) distance-type queries. Section 4 describes a

simple distance oracle with space Ω(𝑛4/3) and faster query times than those of Theorem 1.1.

2
Specifically, deciding whether the shortest 𝑠-to-𝑣 path is a prefix of the shortest 𝑠-to-𝑥 path for some vertex 𝑥 , or whether

it branches to the left or to the right of it.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:6 Charalampopoulos et al.

Section 5 introduces the main distance oracle of Theorem 1.1 and the high-level query algorithm.

The high-level algorithm relies on specialized point location routines, which are introduced in

Section 6. Section 7 analyzes the space and query time of the distance oracle whereas its construction

time is addressed in Section 8. Section 9 explains how to remove a simplifying assumption made

throughout the paper, that each region is bounded by a single hole. We conclude with some remarks

and open problems in Section 10.

The newMSSP implementation is described in Appendix A.

2 PRELIMINARIES
2.1 The Graph and its Embedding
A weighted directed planar graph 𝐺 = (𝑉 , 𝐸, ℓ) is represented by a combinatorial embedding: for

each 𝑣 ∈ 𝑉 (𝐺) we list the edges incident to 𝑣 according to the clockwise order around 𝑣 . Let

𝑛 = |𝑉 (𝐺) |. We assume that the graph has a fixed embedding, has no negative weight cycles, and,

without loss of generality, further assume the following.

• All the edge-weights are non-negative, i.e., ℓ : 𝐸 → R≥0. This can be ensured in 𝑂 (𝑛 log
2 𝑛

log log𝑛
)

time [39, 55]. Furthermore, in 𝑂 (𝑛) time, via randomized or deterministic perturbation [26],

we can assume that there are no zero weight edges, and that shortest paths are unique in any
subgraph of𝐺 . Each original distance can be recovered from the corresponding distance in

the transformed graph in constant time.
3

• The graph is strongly-connected and triangulated, i.e., each face is bounded by a 3-cycle. We

can ensure this by introducing artificial edges with weight 𝑛 ·max𝑒∈𝐸 (𝐺) {ℓ (𝑒)} so as not to

affect any finite distances.

• If (𝑢, 𝑣) ∈ 𝐸 (𝐺) then (𝑣,𝑢) ∈ 𝐸 (𝐺) as well. (In the circular ordering around 𝑣 , they are

represented as a single element {𝑢, 𝑣}.) We stress that the graph is directed. That is, ℓ (𝑢, 𝑣)
and ℓ (𝑣,𝑢) need not be equal, and one of them may be∞.

Suppose 𝑃 = (𝑣0, 𝑣1, . . . , 𝑣𝑘) is a path oriented from 𝑣0 to 𝑣𝑘 , and 𝑒 = (𝑣𝑖 , 𝑢) (where 𝑖 ∈ [1, 𝑘 − 1])
is an edge not on 𝑃 . Then 𝑒 is to the right of 𝑃 if 𝑒 appears between {𝑣𝑖 , 𝑣𝑖+1} and {𝑣𝑖−1, 𝑣𝑖 } in the

clockwise order around 𝑣𝑖 , and left of 𝑃 otherwise.

2.2 Separators and 𝒓-Divisions
Lipton and Tarjan [49] proved that every planar graph contains a separator of 𝑂 (

√
𝑛) vertices that,

once removed, breaks the graph into components with at most 2𝑛/3 vertices each.Miller [52] showed

that every triangulated planar graph has a 𝑂 (
√
𝑛)-size separator that consists of a simple cycle.

Simple cycle separators can be used to recursively separate a planar graph until its components

have constant size. Klein, Mozes, and Sommer [46] showed how to obtain, in𝑂 (𝑛) time, a complete

recursive decomposition tree of 𝐺 that is a binary tree whose nodes correspond to subgraphs of 𝐺 ,

called regions, with the root being all of 𝐺 , and the leaves being regions of constant size. The set of

boundary vertices of a region 𝑅 is denoted by 𝜕𝑅: it consists of those vertices of 𝑅 that belong to

some separator along the recursive decomposition used to obtain 𝑅.

An 𝑟 -division, introduced by Frederickson [29], is a set of Θ(𝑛/𝑟) regions, no two of which are

ancestor of one another in the recursive decomposition tree, whose union is 𝐺 (i.e., a maximal

anti-chain), and such that each region has 𝑂 (𝑟) vertices and 𝑂 (
√
𝑟) boundary vertices.

3
Lemma 3.3 in [26] asserts that for any two paths 𝑝1, 𝑝2 from 𝑠 to 𝑡 , there exists a path 𝑝 that is strictly shorter (under the

perturbation) than at least one of 𝑝1, 𝑝2. The proof of the lemma shows that the edges of 𝑝 are contained in the union of the

edges of 𝑝1 and 𝑝2. Hence, shortest paths are unique in any subgraph of𝐺 . (In fact, [26, Lemma 3.3] discusses costs of flows,

of which shortest paths is a special case.)

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:7

We use [46], for computing a hierarchical ®𝑟 -division, where ®𝑟 = (𝑟𝑚, . . . , 𝑟1) and 𝑛 = 𝑟𝑚 > · · · >
𝑟1 = Ω(1) in linear time. Each region in each 𝑟𝑖-division is a region in the complete recursive

decomposition tree of 𝐺 . Such an ®𝑟 -division has the following properties:

• (Division & Hierarchy) For each 𝑖 , R𝑖 is the set of regions in an 𝑟𝑖-division of 𝐺 , where

R𝑚 = {𝐺} consists of the graph itself. For each 𝑖 < 𝑖′ ≤ 𝑚 and 𝑅𝑖 ∈ R𝑖 , there is a unique
𝑅𝑖′ ∈ R𝑖′ such that 𝐸 (𝑅𝑖) ⊆ 𝐸 (𝑅𝑖′). The ®𝑟 -division can therefore be represented as a rooted

tree of regions.

• (Boundaries and Holes) The 𝑂 (√𝑟𝑖) boundary vertices of any 𝑅𝑖 ∈ R𝑖 lie on a constant

number of faces of 𝑅𝑖 called holes, each bounded by a cycle (not necessarily simple).

We modify the output of the Klein-Mozes-Sommer [46] ®𝑟 -division in two ways. First, we sup-

plement it with a zeroth level. The layer-0 R0 = {{𝑣} | 𝑣 ∈ 𝑉 (𝐺)} consists of singleton sets, and

each {𝑣} is attached as a (leaf) child of an arbitrary 𝑅 ∈ R1 for which 𝑣 ∈ 𝑅. Second, we modify the

graph so that every hole of every region is bounded by a simple cycle in the graph. This involves

cutting along paths of repeated edges; see Section 9 for details of this transformation.

Suppose that 𝑓 is one of the𝑂 (1) holes of region 𝑅 and𝐶𝑓 is the cycle bounding 𝑓 . The cycle𝐶𝑓

partitions 𝐸 (𝐺) −𝐶𝑓 into two parts. Let 𝑅 𝑓 ,out
be the graph induced by the part disjoint from 𝑅,

together with 𝐶𝑓 , i.e., 𝐶𝑓 appears in both 𝑅 and 𝑅 𝑓 ,out
. The presentation of the algorithm is greatly

simplified by assuming that in every region 𝑅, 𝜕𝑅 lies on a single hole 𝑓𝑅 . We use 𝑅out as a short

form of 𝑅 𝑓𝑅 ,out
. In Section 9 we explain how to remove this assumption.

2.3 Multiple-Source Shortest Paths
Consider a weighted planar graph 𝐻 with a distinguished face 𝑓 on vertices 𝑆 . Klein’s MSSP algo-

rithm [45] takes 𝑂 (|𝐻 | log |𝐻 |) time and produces an 𝑂 (|𝐻 | log |𝐻 |)-size data structure that, given
𝑠 ∈ 𝑆 and 𝑣 ∈ 𝑉 (𝐻), returns dist𝐻 (𝑠, 𝑣) in 𝑂 (log |𝐻 |) time. Klein’s algorithm can be viewed [11] as

continuously moving the source vertex around the boundary face 𝑓 , recording all changes to the

single-source shortest paths (SSSP) tree in a Link-Cut tree data structure [59]. It is shown [45] that

each edge in 𝐻 enters and leaves the SSSP tree exactly once, and hence the number of changes is

𝑂 (|𝐻 |). Each change to the tree can be handled in𝑂 (log |𝐻 |) time [59], and the generic persistence

method of [25] allows for querying any state of the SSSP tree. The important point is that the total

space is linear in the number of updates to the structure (𝑂 (|𝐻 |)) times the update time (𝑂 (log |𝐻 |)).
We show that this structure can be augmented to also answer other useful queries. Further, we

present alternative tradeoffs for the problem by implementingMSSP using Euler Tour trees [38],

as opposed to the data structure of [45] that uses Link-Cut trees [59]. Since our data structure

(with Euler Tour trees) does not satisfy the criteria of Driscoll et al.’s [25] persistence method for

pointer-based data structures, we use the folklore implementation of persistent arrays
4
to make

any RAM data structure persistent, with doubly-logarithmic slowdown in the query time. See

Appendix A for a proof of Lemma 2.1.

Lemma 2.1 (Cf. Klein [45] and Cabello et al. [11]). Let 𝐻 be a planar graph, 𝑆 be the vertices on
some distinguished face 𝑓 , and 𝜅 ≥ 1 be a parameter. Consider the following queries.
• Given 𝑠 ∈ 𝑆, 𝑣 ∈ 𝑉 (𝐻), return dist𝐻 (𝑠, 𝑣).

4
Dietz [21] credits this method to an oral presentation of Dietzfelbinger et al. [22], which highlighted it as an application of

dynamic perfect hashing. The idea is to maintain a van Emde Boas-type data structure [65, 66] for every array location𝐴[𝑖]
that contains every value written to 𝐴[𝑖], keyed by the time it is written. Both the values and timestamps are𝑂 (log𝑛)-bit
integers. Looking up 𝐴[𝑖] at time 𝑡 involves a single predecessor search, which takes𝑂 (log log𝑛) time. Perfect hashing is

used to reduce the space of each van Emde Boas structure to linear. If randomness is undesirable, we can afford to construct

linear-space deterministic dictionaries with an𝑂 (log𝑛)-factor overhead in construction time; see Hagerup, Milterson, and

Pagh [36].

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:8 Charalampopoulos et al.

Fig. 2. The clockwise order of 𝑒𝑥 , 𝑒𝑢 , 𝑒𝑣 around 𝑣 tells us whether the shortest 𝑠-to-𝑢 path branches from the
shortest 𝑠-to-𝑣 path to the right or left.

• Given 𝑠 ∈ 𝑆,𝑢, 𝑣 ∈ 𝑉 (𝐻), return (𝑥, 𝑒𝑢, 𝑒𝑣), where 𝑥 is the lowest common ancestor (LCA) of
𝑢 and 𝑣 in the SSSP tree rooted at 𝑠 and 𝑒𝑧 is the edge on the path from 𝑥 to 𝑧 (if 𝑥 ≠ 𝑧) for
𝑧 ∈ {𝑢, 𝑣}.

We can achieve either of the following space-time tradeoffs:
(a) 𝑂 (|𝐻 | log |𝐻 |) construction time, 𝑂 (|𝐻 | log |𝐻 |)-space, and 𝑂 (log |𝐻 |) query time, or
(b) 𝑂 (𝜅 |𝐻 |1+1/𝜅) construction time, 𝑂 (𝜅 |𝐻 |1+1/𝜅)-space, and 𝑂 (𝜅 log log |𝐻 |) query time.

The purpose of the second query is to tell whether 𝑢 lies on the shortest 𝑠-to-𝑣 path (𝑥 = 𝑢) or

vice versa, or to tell whether the 𝑠-to-𝑢 path branches left or right from the 𝑠-to-𝑣 path. If they do

branch, we also say that 𝑢 is to the left/right of the 𝑠-to-𝑣 path. Once we retrieve the LCA 𝑥 and

edges 𝑒𝑢, 𝑒𝑣 , we get the edge 𝑒𝑥 from 𝑥 to its parent. The clockwise order of 𝑒𝑥 , 𝑒𝑢, 𝑒𝑣 around 𝑥 tells

us
5
whether the shortest 𝑠-to-𝑢 path branches to the left or to the right of the shortest 𝑠-to-𝑣 path.

See Figure 2.

3 ADDITIVELY WEIGHTED VORONOI DIAGRAMS
Let 𝐻 be a directed planar graph with real edge-lengths and no negative-length cycles. Assume

that all faces of 𝐻 are triangles except, perhaps, a single face ℎ, which we regard as the infinite
face. Let 𝑆 be the set of vertices that lie on ℎ. The vertices of 𝑆 are called sites. Each site 𝑠 ∈ 𝑆 has a

weight 𝜔 (𝑠) ≥ 0 associated with it. The additively weighted distance from a site 𝑠 ∈ 𝑆 to a vertex

𝑣 ∈ 𝑉 (𝐻), denoted by 𝑑𝜔 (𝑠, 𝑣), is defined as 𝜔 (𝑠) plus the length of the shortest 𝑠-to-𝑣 path in 𝐻 .

To avoid clutter in the presentation we assume that |𝑆 | > 2. This is without loss of generality since

when |𝑆 | ≤ 2 (in fact, whenever 𝑆 = 𝑂 (1)) point location (Theorem 3.2) becomes trivial.

Definition 3.1. The Voronoi diagram of 𝑆 within 𝐻 with additive weights 𝜔 , denoted VD[𝐻, 𝑆, 𝜔],
is a partition of 𝑉 (𝐻) into pairwise disjoint sets, one set Vor(𝑠) for each site 𝑠 ∈ 𝑆 . The set Vor(𝑠),
which is called the Voronoi cell of 𝑠 , contains all vertices in 𝑉 (𝐻) that are closer (w.r.t. 𝑑𝜔 (·, ·)) to 𝑠
than to any other site in 𝑆 . Ties are always broken consistently, in favor of sites with larger additive

weights—formally, with respect to reverse lexicographic order on (𝜔 (𝑠), 𝑠).

Since every subgraph of 𝐻 is strongly connected, the Voronoi cells partition 𝑉 (𝐻). Due to the

tie-breaking rule, for any 𝑣 ∈ Vor(𝑠), the shortest 𝑠-to-𝑣 path is contained in Vor(𝑠). In particular,

Vor(𝑠) is connected.
We say that an edge 𝑒 of 𝐻 belongs to Vor(𝑠) if both endpoints of 𝑒 belong to Vor(𝑠). We say that

𝑒 is a boundary edge of Vor(𝑠) if exactly one endpoint of 𝑒 belongs to Vor(𝑠).
5
The order can be inferred in constant time by storing with each edge its rank in a clockwise traversal of the edges incident

to 𝑥 , starting from an arbitrarily chosen vertex.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:9

Next, we describe a space-efficient dual representation VD
∗ [𝐻, 𝑆, 𝜔] (or simply VD

∗
) of a Voronoi

diagram VD[𝐻, 𝑆, 𝜔]. Let 𝐻 ∗ be the planar dual of 𝐻 . Let VD∗
0
be the subgraph of 𝐻 ∗ consisting

of the duals of edges {𝑢, 𝑣} of 𝐻 such that 𝑢 and 𝑣 are in different Voronoi cells. Let VD
∗
1
be the

graph obtained from VD
∗
0
by dissolving degree-2 vertices into their incident edges (or equivalently,

eliminating each degree-2 vertex by contracting any one of its incident edges). The vertices of VD
∗
1

are called Voronoi vertices. A Voronoi vertex 𝑓 ∗ ≠ ℎ∗ is dual to a triangular face 𝑓 whose three

vertices belong to three distinct Voronoi cells. We call such a face trichromatic. Each Voronoi vertex

𝑓 ∗ stores for each vertex 𝑢 incident to 𝑓 the site 𝑠 such that 𝑢 ∈ Vor(𝑠). Note that ℎ∗ is a Voronoi
vertex. Each face of VD

∗
1
corresponds to a cell Vor(𝑠). Hence there are at most |𝑆 | faces in VD

∗
1
.

Since the minimum degree in VD
∗
1
is 3, the total number of edges, vertices, and faces of VD

∗
1
is

𝑂 (|𝑆 |). Finally, we define VD∗ to be the graph obtained from VD
∗
1
by splitting the node ℎ∗ into

deg(ℎ∗) copies, each one incident to an edge formerly incident to ℎ∗. See Figure 3 for an illustration.

Fig. 3. A planar graph (black edges) with four sites on the infinite face together with the dual Voronoi diagram
VD
∗ (in blue). VD∗ is a tree with 6 vertices. The sites are shown together with their corresponding shortest

path trees (in turquoise, red, yellow, and green).

We say that an edge 𝑒∗
0
of VD

∗
0
is represented by an edge 𝑒∗ of VD∗ if 𝑒∗

0
was contracted into 𝑒∗

in the process defining VD
∗
. We say that an edge 𝑒∗ of VD∗ is incident to Vor(𝑠) if 𝑒∗ is an edge on

the face of VD
∗
1
that corresponds to Vor(𝑠).

Lemma 3.1. If 𝜔 is such that every vertex of 𝑆 lies in its own Voronoi cell then VD
∗ [𝐻, 𝑆, 𝜔] is a tree.

Proof. Suppose that VD
∗
contains a cycle 𝐶∗. Since the degree of each copy of ℎ∗ is one, the

cycle avoids all copies of ℎ∗. Since all the sites are on the boundary of the hole ℎ, each of the vertices

of the graph enclosed by 𝐶∗ belongs in a Voronoi cell that contains no site, a contradiction.

To prove that VD
∗
is connected, observe that in VD

∗
1
, every Voronoi cell is a face bounded by

a cycle that goes through ℎ∗. Let 𝐶∗ denote one such cycle. If 𝐶∗ is disconnected in VD
∗
then, in

VD
∗
1
, 𝐶∗ must visit ℎ∗ at least twice. But this implies that the cell corresponding to 𝐶∗ contains

more than a single site, a contradiction. Thus, the boundary of every Voronoi cell is a connected

subgraph of VD
∗
. Consider, for any 𝑖 , the edge {𝑠𝑖 , 𝑠𝑖+1}. Since 𝑠𝑖 and 𝑠𝑖+1 are in the distinct Voronoi

cells Vor(𝑠𝑖) and Vor(𝑠𝑖+1), the dual of {𝑠𝑖 , 𝑠𝑖+1} is represented by some edge of VD
∗
. Hence, for

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:10 Charalampopoulos et al.

every 𝑖 , the boundaries of the Voronoi cell of 𝑠𝑖 and of 𝑠𝑖+1 share that edge, so they are in the same

connected component of VD
∗
. It follows that the entire VD

∗
is connected. □

Throughout the paper, we force the preconditions to Lemma 3.1 to hold. In particular, suppose

𝑆0 are the vertices lying on the distinguished face ℎ0 in 𝐻0, and 𝑆 = {𝑠 ∈ 𝑆0 | 𝑠 ∈ Vor(𝑠)} are those
sites with non-empty Voronoi cells. Rather than construct VD

∗ [𝐻0, 𝑆0, 𝜔], we embed dummy edges

in ℎ0, so that 𝑆 are the vertices of a distinguished face ℎ in a graph 𝐻 such that dist𝐻0
= dist𝐻 . It

follows from Lemma 3.1 that VD
∗ [𝐻, 𝑆, 𝜔] is a tree. See Figures 3 and 4 for an illustration of how

dummy edges are added to a graph.

Let us also mention an alternative work-around. Consider a site 𝑠 that belongs to the Voronoi

cell of a different site 𝑠′. One can then substitute 𝜔 (𝑠) by 𝑑𝜔 (𝑠′, 𝑠) and consider 𝑠 as a proxy for 𝑠′.
That is, due to our tie-breaking rules, with such updated weights, 𝑠 will belong to its own Voronoi

cell, and whenever we find that some vertex 𝑣 belongs to the Voronoi cell of 𝑠 , we know that in

effect 𝑣 belongs to the Voronoi cell of 𝑠′.

3.1 Point Location in Voronoi Diagrams
The point location problem is, given 𝑣 and some representation of a Voronoi diagram VD[𝐻, 𝑆, 𝜔], to
determine the site 𝑠 ∈ 𝑆 for which 𝑣 ∈ Vor(𝑠) and the distance 𝑑𝜔 (𝑠, 𝑣). In this section we describe

a data structure that answers point location queries efficiently, given access to anMSSP structure

on the relevant graph.

Theorem 3.2. Let 𝐻 be a planar graph and 𝑆 be the vertices on a distinguished face ℎ. Suppose
we have access to an MSSP data structure for 𝐻 with distinguished face ℎ and query time 𝑡𝑞 . After
preprocessing VD∗ [𝐻, 𝑆, 𝜔] in𝑂 (|𝑆 |) time, we can answer point location queries in𝑂 (𝑡𝑞 · log |𝑆 |) time.

In the remainder of this section we prove Theorem 3.2. The main idea is as follows. In order to

find the Voronoi cell Vor(𝑠) to which a query vertex 𝑣 belongs, it suffices to identify an edge 𝑒∗

of VD
∗
that is adjacent to Vor(𝑠). Given 𝑒∗ we can simply check which of its two adjacent cells

contains 𝑣 by comparing the additive distances from the corresponding two sites to 𝑣 using two

MSSP queries. The point location data structure is based on a centroid decomposition of the tree

VD
∗
into connected subtrees, and on the ability to go down this centroid decomposition, each time

choosing a subtree that contains an edge adjacent to Vor(𝑠).
We assume that 𝐻 is triangulated, except for the face ℎ. In addition, for technical reasons we

assume that for every face 𝑓 ≠ ℎ incident to {𝑦0, 𝑦1, 𝑦2}, three artificial vertices 𝑦 𝑓𝑗 , 𝑗 ∈ {0, 1, 2}
have been embedded in 𝑓 , each with a single zero-length incident edge (𝑦 𝑗 , 𝑦 𝑓𝑗).6 This assumption

does not change distances in 𝐻 nor the asymptotic size of 𝐻 . The preprocessing consists of just

computing a centroid decomposition of VD
∗
. A centroid of an 𝑛-node tree 𝑇 is a node 𝑢 ∈ 𝑇 such

that removing 𝑢 and replacing it with copies, one for each edge incident to 𝑢, results in a set of trees,

each with at most
𝑛+1
2

edges. A centroid always exists in a tree with at least one edge. The centroid

decomposition of VD
∗
is defined recursively. In every step of the centroid decomposition we work

with a connected subtree 𝑇 ∗ of VD∗. Initially, 𝑇 ∗ is the entire tree VD∗. Recall that there are no
nodes of degree 2 in VD

∗
. If there are no nodes of degree 3, then 𝑇 ∗ consists of a single edge of

VD
∗
, and the decomposition terminates. Otherwise, we choose a centroid 𝑐∗, and partition 𝑇 ∗ into

the three subtrees 𝑇 ∗
0
,𝑇 ∗

1
,𝑇 ∗

2
obtained by splitting 𝑐∗ into three copies, one for each edge incident

to 𝑐∗. Since the size of VD∗ is 𝑂 (|𝑆 |), the depth of this recursive decomposition is log |𝑆 | +𝑂 (1).
6
The artificial vertices are leaves in any shortest path tree, while this is not true for the 𝑦𝑖 s. Then, for every vertex 𝑣 ≠ 𝑦

𝑓

𝑗

that is not on the shortest 𝑠 𝑗 -to-𝑦 𝑗 path, the shortest 𝑠 𝑗 -to-𝑣 path branches either left or right of the shortest 𝑠 𝑗 -to-𝑦
𝑓

𝑗
path,

whereas 𝑣 may be a descendant of 𝑦 𝑗 in the shortest path tree rooted at 𝑠 𝑗 . This is used, for instance, in Lemma 3.3.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:11

(a)

(b) (c)

Fig. 4. (a) The original 𝐻0 is a triangulated grid, with 𝑓0 being the exterior face. The boundary vertices 𝑆 with
non-empty Voronoi cells are marked with colored halos. Edges are added so that 𝑆 are on the exterior face
𝑓 . The vertices of VD∗ are the duals of trichromatic faces, and those derived by splitting 𝑓 ∗ into |𝑆 | vertices.
The edges of VD∗ correspond to paths of duals of bichromatic edges. (b) The dual representation VD

∗. (c) A
centroid decomposition of VD∗.

Such a decomposition can be computed in 𝑂 (|𝑆 |) time [8, 33] and can be represented as a ternary

tree which we call the centroid decomposition tree, in 𝑂 (|𝑆 |) space. Each non-leaf node of the

centroid decomposition tree corresponds to a centroid vertex 𝑐∗, which is stored explicitly. We

will refer to nodes of the centroid decomposition tree by their associated centroid. Each node also

implicitly corresponds to the subtree of VD
∗
of which 𝑐∗ is the centroid. The leaves of the centroid

decomposition tree correspond to single edges of VD
∗
, which are stored explicitly. See Figure 4.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:12 Charalampopoulos et al.

The procedure SimpleCentroidSearch(VD∗, 𝑣) takes as input a dual Voronoi diagram VD
∗
and

a vertex 𝑣 to be located. It returns a pair (𝑠, 𝑑) where 𝑣 ∈ Vor(𝑠) and 𝑑 = 𝑑𝜔 (𝑠, 𝑣). The procedure
is recursive. It traverses a centroid decomposition for VD

∗
, and at intermediate invocations the

procedure takes a third argument 𝑇 ∗, which is a subtree of the centroid decomposition. The loop

invariant is that𝑇 ∗ contains a leaf representing some edge on the boundary of Vor(𝑠). The algorithm
bottoms out in one of two base cases (Line 8 or Line 13).

The first way the recursion can end is if we reach the bottom of the centroid decomposition. If

𝑇 ∗ is a singleton, its single node 𝑓 ∗ corresponds to an edge in VD
∗
separating the Voronoi cells

of two sites, say 𝑠1 and 𝑠2. At this point we know that either 𝑣 ∈ Vor(𝑠1) or 𝑣 ∈ Vor(𝑠2), and
determine which case is true by comparing the additive distances from each of 𝑠1 and 𝑠2, which can

be computed using the MSSP data structure (Lines 2–9).

We now explain how to treat the case where 𝑇 ∗ is not a singleton. The root 𝑓 ∗ of 𝑇 ∗ is dual to a

trichromatic face 𝑓 composed of three vertices𝑦0, 𝑦1, 𝑦2 in clockwise order, which are, respectively, in

distinct Voronoi cells of sites 𝑠0, 𝑠1, 𝑠2. Let 𝑒0, 𝑒1, 𝑒2 be the edges {𝑦2, 𝑦0}, {𝑦0, 𝑦1}, {𝑦1, 𝑦2}, respectively.
For 𝑗 ∈ {0, 1, 2}, let 𝑝 𝑗 denote the 𝑠 𝑗 -to-𝑦 𝑗 shortest path. Further, let us denote by𝐶 𝑗 the path obtained

by concatenating path 𝑝 𝑗 , edge 𝑒 𝑗 , and the reverse of path 𝑝 𝑗−1. (In notation related to a triangular

face, all subscripts are naturally modulo 3, i.e., 𝑝 𝑗−1 is short for 𝑝 𝑗−1 (mod 3) .) A vertex of 𝐻 either

lies on one of the 𝑝 𝑗 s, or strictly to the right of exactly one of the 𝐶 𝑗 s. The second case can be

equivalently restated as follows: 𝑣 is enclosed by the cycle comprised of 𝐶 𝑗 and the 𝑠 𝑗−1-to-𝑠 𝑗 walk
along face ℎ that does not contain 𝑠 𝑗+1. See Figure 5.

For each 𝑗 , we can check whether 𝑣 lies on some 𝑝 𝑗 using the MSSP data structure. If this is the

case, then 𝑣 ∈ Vor(𝑠 𝑗), and we are done (Lines 12–13). We next show how to check whether 𝑣 lies

to the right of some 𝐶 𝑗 .

Lemma 3.3. We can check whether 𝑣 lies strictly to the right of 𝐶 𝑗 with a constant number of queries
to an MSSP data structure for 𝐻 with sources 𝑆 .

Proof. We assume 𝑣 does not lie on 𝐶 𝑗 since this was already checked. We check which of the

sites 𝑠 𝑗 and 𝑠 𝑗−1 is closer to 𝑣 with respect to the additive distances with two queries to the MSSP
data structure at hand. Without loss of generality, suppose that this site is 𝑠 𝑗 . We then use a single

query to theMSSP data structure to determine whether the shortest 𝑠 𝑗 -to-𝑣 path branches right

from the shortest 𝑠 𝑗 -to-𝑦
𝑓

𝑗
path. (Recall that 𝑦

𝑓

𝑗
is an auxiliary vertex embedded in the face 𝑓 and

connected to 𝑦 𝑗 with a zero length edge).

As we show next, 𝑣 lies strictly to the right of 𝐶 𝑗 if and only if 𝑣 lies strictly to the right of the

shortest 𝑠 𝑗 -to-𝑦
𝑓

𝑗
path. Towards a contradiction, suppose that 𝑣 lies strictly to the right of exactly

one of 𝐶 𝑗 and the shortest 𝑠 𝑗 -to-𝑦
𝑓

𝑗
path. Then, the shortest 𝑠 𝑗 -to-𝑣 path must cross 𝑝 𝑗−1. Due to

planarity, it can only do so at a vertex. This yields a contradiction, as all vertices on 𝑝 𝑗−1 are in
Vor(𝑠 𝑗−1), and due to the assumed uniqueness of shortest paths this would mean that 𝑠 𝑗 is not

closer to 𝑣 than 𝑠 𝑗−1. □

If it turns out that 𝑣 is right of 𝐶 𝑗 , the algorithm recurses on the subtree of 𝑇 ∗ rooted at the child

of 𝑓 ∗ that contains the leaf edge of VD∗ representing 𝑒∗𝑗 (Line 16).

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:13

Algorithm 1 SimpleCentroidSearch(VD∗, 𝑣,𝑇 ∗)
Input: A Voronoi diagram VD

∗
, the vertex 𝑣 to be located, and a centroid decomposition tree 𝑇 ∗ of

a subtree of VD
∗
. If the last argument is omitted, 𝑇 ∗ is the decomposition tree for the entire VD

∗
.

Require: Some edge of the boundary of the Voronoi cell containing 𝑣 in VD
∗
is a leaf in 𝑇 ∗.

Output: The site 𝑠 such that 𝑣 ∈ Vor(𝑠), and the additive distance to 𝑣 .

1: 𝑓 ∗ ← root of 𝑇 ∗

2: if 𝑓 ∗ is a single edge then
3: 𝑠1, 𝑠2 ← sites corresponding to 𝑓 ∗

4: for 𝑗 = 1, 2 do
5: 𝑑 𝑗 ← 𝜔 (𝑠 𝑗) + dist𝐻 (𝑠 𝑗 , 𝑣) ⊲ MSSP query

6: end for
7: 𝑘 ← argmin𝑗 (𝑑 𝑗)
8: return (𝑠𝑘 , 𝑑𝑘)
9: end if
10: 𝑠0, 𝑠1, 𝑠2 ← sites corresponding to 𝑓 ∗ ⊲ 𝑓 is a face on {𝑦0, 𝑦1, 𝑦2}, 𝑦𝑖 ∈ Vor(𝑠𝑖)
11: for 𝑗 = 0, 1, 2 do
12: if 𝑣 lies on 𝑝 𝑗 then ⊲ MSSP query; 𝑝 𝑗 is the shortest 𝑠 𝑗 -to-𝑦 𝑗 path in 𝐻

13: return(𝑠 𝑗 , 𝜔 (𝑠 𝑗) + dist𝐻 (𝑠 𝑗 , 𝑣))
14: else if 𝑣 is (strictly) to the right of 𝐶 𝑗 then ⊲ See Lemma 3.3; 𝐶 𝑗 is 𝑝 𝑗 ∪ {𝑒 𝑗 } ∪ 𝑝 𝑗−1
15: 𝑇 ∗𝑗 ← subtree of𝑇 ∗ rooted at the child of 𝑓 ∗ containing the leaf edge of VD∗ representing

𝑒∗𝑗
16: return SimpleCentroidSearch(VD∗, 𝑣,𝑇 ∗𝑗)
17: end if
18: end for

Fig. 5. Illustration of the setting and proof of Theorem 3.2. Left: A decomposition of VD∗ (shown in blue) by a
centroid 𝑓 ∗ into three subtrees, and a corresponding partition of 𝑃 into three regions delimited by the paths
𝑝 𝑗 (shown in red, yellow, and turquoise). Right: a schematic illustration of the same scenario.

We are now ready to complete the proof of Theorem 3.2 on the correctness and time complexity

of SimpleCentroidSearch. Define 𝑓 , 𝑦 𝑗 , 𝑠 𝑗 , 𝑒∗𝑗 , 𝑓
∗, 𝑝 𝑗 ,𝐶 𝑗 , for 𝑗 = {0, 1, 2} as above, and let 𝑠 be such

that 𝑣 ∈ Vor(𝑠). If Line 12 tells us that 𝑣 is on 𝑝 𝑗 , then 𝑠 is 𝑠 𝑗 , as returned in Line 13. The loop invariant
is that 𝑇 ∗ contains some leaf edge that belongs to the boundary of the cell Vor(𝑠). This is clearly

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:14 Charalampopoulos et al.

true in the initial call, when 𝑇 ∗ is the entire centroid decomposition of VD
∗
. Suppose that Line 14

tells us that 𝑣 lies strictly to the right of 𝐶 𝑗 . Observe that since 𝑝 𝑗 and 𝑝 𝑗−1 are monochromatic, all

edges of VD
∗
correspond to paths in 𝐻 ∗ that are disjoint from the set of dual edges of 𝐶 𝑗 , with the

exception of 𝑒∗𝑗 . We claim that 𝑇 ∗𝑗 contains at least one edge bounding Vor(𝑠). First, this is clearly
true if 𝑒∗𝑗 is such an edge, i.e., if 𝑠 ∈ {𝑠 𝑗−1, 𝑠 𝑗 }. In the complementary case, all vertices of Vor(𝑠) are
strictly to the right of 𝐶 𝑗 . Hence, none of the edges bounding Vor(𝑠) can be in 𝑇 ∗

𝑗 ′ for 𝑗
′ ≠ 𝑗 . Thus,

the maintained invariant implies that there is such an edge in 𝑇 ∗𝑗 .
When 𝑓 ∗ is a single edge on the boundary of Vor(𝑠1) and Vor(𝑠2) (Line 2), the loop invariant

guarantees that either 𝑠 = 𝑠1 or 𝑠 = 𝑠2. The additive distances 𝑑1 and 𝑑2 to 𝑠1 and 𝑠2 respectively are

computed in Line 5, and 𝑠 is the site with smaller additive distance among the two (Line 7). Hence,

Line 8 returns the correct answer.

The efficiency of procedure SimpleCentroidSearch depends on the time required to compute

distances in 𝐻 (Lines 5 and 13) and whether 𝑣 lies on or to the left/right of a shortest path 𝑝 𝑗
(Lines 12 and 14). By Lemma 2.1 and Lemma 3.3, each of these operations is supported by the

MSSP data structure for 𝐻, 𝑆 , whose query time is 𝑡𝑞 . Hence the cost of the top-level call to

SimpleCentroidSearch is 𝑂 (𝑡𝑞 · log |𝑆 |), 𝑂 (𝑡𝑞) time for each of the log |𝑆 | +𝑂 (1) recursive calls.

4 A SIMPLE PLANAR DISTANCE ORACLE
In this section we present a distance oracle that is simpler than the one developed in Sections 5–8.

Moreover, the time-space tradeoffs of the simpler distance oracle are actually incomparable to those

of the oracle described in Sections 5–8 and would be more attractive if query time is prioritized
over space. In particular, depending on the MSSP implementation (Lemma 2.1), we can achieve

either 𝑂̃ (𝑛4/3) space and 𝑂 (log2 𝑛) query time or 𝑛4/3+𝑜 (1) space and log
1+𝑜 (1) 𝑛 query time.

4.1 The Data Structure
We begin by computing an ®𝑟 = (𝑟3, 𝑟2, 𝑟1) division where 𝑟3 = 𝑛, 𝑟2 ≈ 𝑛2/3, and 𝑟1 ≈ 𝑛1/3. In other

words, R3 = {𝐺} contains one region, namely𝐺 , which is partitioned into regions R2, each with

𝑂 (𝑟2) vertices and𝑂 (
√
𝑟2) boundary vertices, and so on. As usual, we temporarily assume that each

region is bounded by a single hole and remove this assumption in Section 4.4. The data structure

consists of the following three parts.

(1) For each 𝑅1 ∈ R1 and each pair of vertices 𝑢, 𝑣 ∈ 𝑅1, store dist𝑅1
(𝑢, 𝑣). The space for this part

is 𝑂 ((𝑛/𝑟1) · 𝑟 21) = 𝑂 (𝑛 · 𝑟1).
(2) For each 𝑅2 ∈ R2, we store two MSSP structures, one for 𝑅2 and one for 𝑅out

2
, both w.r.t. 𝜕𝑅2.

For each 𝑅1 ∈ R1 with parent 𝑅2 ∈ R2 we storeMSSP structures for 𝑅1 and 𝑅
out

1
∩𝑅2 w.r.t. 𝜕𝑅1.

The space required for these structures is, depending on the MSSP implementation, either

𝑂 ((𝑛/𝑟2) · 𝑛 log𝑛 + (𝑛/𝑟1) · 𝑟2 log 𝑟2) = 𝑂̃ (𝑛4/3)

or

𝑂 (𝜌 (𝑛2/𝑟2 + 𝑛𝑟2/𝑟1)),

where 𝜌 = 𝜅𝑛1/𝜅 is the space overhead.

(3) Suppose vertex 𝑢 is in 𝑅1 ∈ R1, 𝑅1’s parent is 𝑅2 ∈ R2, and 𝑅2’s parent is 𝑅3 = 𝐺 ∈ R3. For

each vertex 𝑢 we store the dual Voronoi diagrams VD
∗
in
(𝑢, 𝑅1), VD∗

in
(𝑢, 𝑅2), VD∗out (𝑢, 𝑅1), and

VD
∗
out
(𝑢, 𝑅2), which are defined as follows.

• For 𝑖 ∈ {1, 2}, VD∗
in
(𝑢, 𝑅𝑖) is VD∗ [𝑅𝑖 , 𝜕𝑅𝑖 , 𝜔], the dual representation of the Voronoi diagram

for 𝑅𝑖 with sites 𝜕𝑅𝑖 and additive weights given by 𝜔 (𝑠) = dist𝑅𝑖+1 (𝑢, 𝑠).
• For 𝑖 ∈ {1, 2}, VD∗

out
(𝑢, 𝑅𝑖) is VD∗ [𝑅out𝑖 ∩ 𝑅𝑖+1, 𝜕𝑅𝑖 , 𝜔] with 𝜔 (𝑠) = dist𝑅𝑖+1 (𝑢, 𝑠).

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:15

The space for each dual Voronoi diagram is linear in the number of sites, i.e., over all 𝑢 the

total space is 𝑂 (𝑛 · (√𝑟2 +
√
𝑟1)) = 𝑂̃ (𝑛4/3).

4.2 TheQuery Algorithm
The query algorithm SimpleDist(𝑢, 𝑣, 𝑅𝑖) is recursive. It takes vertices 𝑢, 𝑣 ∈ 𝑅𝑖 ∈ R𝑖 and reports

dist𝑅𝑖 (𝑢, 𝑣). At the top level recursive call SimpleDist(𝑢, 𝑣,𝐺) we have 𝑖 = 3 (𝐺 ∈ R3 is the only

region at level 3) and when 𝑖 = 1 the distance can be reported immediately (Line 2), using part 1 of

the data structure. Therefore the recursion depth is constant.

When 𝑖 ∈ {2, 3} we let 𝑅𝑖−1 be a subregion of 𝑅𝑖 containing 𝑢. There are two cases: 𝑣 ∈ 𝑅𝑖−1 or
𝑣 ∉ 𝑅𝑖−1. When 𝑣 ∈ 𝑅𝑖−1 the shortest 𝑢-to-𝑣 path can be contained entirely in 𝑅𝑖−1 or it can cross

𝜕𝑅𝑖−1. In the former case dist𝑅𝑖 (𝑢, 𝑣) = dist𝑅𝑖−1 (𝑢, 𝑣), which is computed recursively (Line 6). In the

latter case, suppose 𝑠 ∈ 𝜕𝑅𝑖−1 is the last boundary vertex along the shortest 𝑢-to-𝑣 path. Then

dist𝑅𝑖 (𝑢, 𝑣) = dist𝑅𝑖 (𝑢, 𝑠) + dist𝑅𝑖−1 (𝑠, 𝑣) = 𝜔 (𝑠) + dist𝑅𝑖−1 (𝑠, 𝑣),

where 𝜔 is the additive weight function in VD
∗
in
(𝑢, 𝑅𝑖−1). In other words, computing dist𝑅𝑖 (𝑢, 𝑣)

reduces to a point location problem in VD
∗
in
(𝑢, 𝑅𝑖−1) (Line 7). When 𝑣 ∉ 𝑅𝑖−1 we know the shortest

𝑢-to-𝑣 path crosses 𝜕𝑅𝑖−1 at least once; suppose that the last time it crosses is at vertex 𝑠 . Then, by

similar reasoning,

dist𝑅𝑖 (𝑢, 𝑣) = dist𝑅𝑖 (𝑢, 𝑠) + dist𝑅out

𝑖−1∩𝑅𝑖 (𝑠, 𝑣) = 𝜔 (𝑠) + dist𝑅out

𝑖−1∩𝑅𝑖 (𝑠, 𝑣),

where 𝜔 is the additive weight function from VD
∗
out
(𝑢, 𝑅𝑖−1). This point location problem in

VD
∗
out
(𝑢, 𝑅𝑖−1) is handled in Line 10.

The query time is dominated by 𝑂 (1) point location queries. By Theorem 3.2, SimpleDist takes
𝑂 (𝑡𝑞 log𝑛) time, where 𝑡𝑞 ∈ {𝑂 (log𝑛),𝑂 (𝜅 log log𝑛)} depends on the MSSP implementation.

4.3 Analysis
If we use the first implementation of MSSP from Lemma 2.1, the overall space is linear in

𝑛𝑟1 + (𝑛2/𝑟2 + 𝑛𝑟2/𝑟1) log𝑛 + 𝑛
√
𝑟2,

which is𝑂 (𝑛4/3 log2/3 𝑛) when 𝑟2 = 𝑛2/3 log1/3 𝑛 and 𝑟1 = 𝑛
1/3

log
2/3 𝑛. The space can be reduced to

𝑂 (𝑛4/3 log1/3 𝑛) by using a 4-level ®𝑟 -division, say, ®𝑟 = (𝑛, 𝑛2/3 log2/3 𝑛, 𝑛 (2/3)2 , 𝑛 (2/3)3). This increases
the cost of distance queries by a small constant factor.

If we use the second implementation of MSSP from Lemma 2.1, with a space overhead of

𝜌 = 𝜅𝑛1/𝜅 , the overall space is linear in

𝑛𝑟1 + 𝜌 (𝑛2/𝑟2 + 𝑛𝑟2/𝑟1) + 𝑛
√
𝑟2,

which is 𝑂 (𝑛4/3𝜌2/3) = 𝑂 (𝜅2/3𝑛4/3+2/(3𝜅)) when 𝑟2 = 𝑛2/3𝜌1/3, 𝑟1 = 𝑛1/3𝜌2/3. When query time is

prioritized it is best to set 𝜅 = 𝜔 (1) and log
𝑜 (1) 𝑛, leading to a distance oracle with 𝑛4/3+𝑜 (1) space

and query time 𝑂 ((𝜅 log log𝑛) · log𝑛) = log
1+𝑜 (1) 𝑛.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:16 Charalampopoulos et al.

Algorithm 2 SimpleDist(𝑢, 𝑣, 𝑅𝑖)
Input: Two vertices 𝑢, 𝑣 in a region 𝑅𝑖 ∈ R𝑖 , 𝑖 ∈ {1, 2, 3}.

Output: dist𝑅𝑖 (𝑢, 𝑣).
1: if 𝑖 = 1 then
2: Return dist𝑅𝑖 (𝑢, 𝑣) ⊲ Stored explicitly in Part 1.

3: end if
4: 𝑅𝑖−1 ← a sub-region of 𝑅𝑖 containing 𝑢

5: if 𝑣 ∈ 𝑅𝑖−1 then
6: 𝑑1 ← SimpleDist(𝑢, 𝑣, 𝑅𝑖−1)
7: 𝑑2 ← SimpleCentroidSearch(VD∗

in
(𝑢, 𝑅𝑖−1), 𝑣)

8: return min(𝑑1, 𝑑2)
9: else
10: return SimpleCentroidSearch(VD∗

out
(𝑢, 𝑅𝑖−1), 𝑣)

11: end if

4.4 Dealing with Multiple Holes
In general the boundary vertrices 𝜕𝑅𝑖 of any region 𝑅𝑖 lie on 𝑂 (1) holes. We modify the data

structure and query algorithm to deal with multiple holes as follows.

(1) For each region 𝑅𝑖 in the decomposition and each hole ℎ of 𝑅𝑖 we build two MSSP data

structures, one for 𝑅𝑖 and one for 𝑅
ℎ,out
𝑖

. In both structures, the set of sources are the vertices

of 𝜕𝑅𝑖 that lie on ℎ.

(2) Fix a vertex 𝑢 that lies in 𝑅1 ∈ R1, which is contained in 𝑅2 ∈ R2 and 𝐺 = 𝑅3 ∈ R3. For

𝑖 ∈ {1, 2}, for each hole ℎ of 𝑅𝑖 , let 𝑆 be the vertices on ℎ.

• We store VD
∗
in
(𝑢,ℎ, 𝑅𝑖), which is the dual representation VD∗ [𝑅𝑖 , 𝑆, 𝜔] with additive weights

𝜔 (𝑠) = dist𝑅𝑖+1 (𝑢, 𝑠).
• We store VD

∗
out
(𝑢,ℎ, 𝑅𝑖), which is the dual representation VD

∗ [𝑅ℎ,out
𝑖
∩ 𝑅𝑖+1, 𝑆, 𝜔] with

additive weights 𝜔 (𝑠) = dist𝑅𝑖+1 (𝑢, 𝑠).
The algorithm SimpleDist(𝑢, 𝑣, 𝑅𝑖) is modified as follows. In Line 7 we are considering 𝑢-

to-𝑣 paths that cross 𝜕𝑅𝑖−1, but the last 𝜕𝑅𝑖−1 vertex 𝑠 could be on any hole of 𝑅𝑖−1. Thus, for
each of the 𝑂 (1) holes ℎ we execute SimpleCentroidSearch(VD∗

in
(𝑢,ℎ, 𝑅𝑖−1), 𝑣) and let 𝑑2 be

the minimum distance found. In Line 10, there is a unique hole ℎ of 𝑅𝑖−1 for which 𝑣 ∈ 𝑅ℎ,out𝑖−1
and we know that every 𝑢-to-𝑣 path must cross ℎ. Therefore, we still only make one call to

SimpleCentroidSearch(VD∗
out
(𝑢,ℎ, 𝑅𝑖−1), 𝑣).

Theorem 4.1 summarizes the space-time tradeoffs achievable by our simplest distance oracle.

Theorem 4.1. Let 𝐺 be a weighted, directed planar graph. Distance queries in 𝐺 can be answered
in 𝑂 (log2 𝑛) time with an 𝑂̃ (𝑛4/3)-size oracle, or in log

1+𝑜 (1) 𝑛 time with an 𝑛4/3+𝑜 (1) -size oracle.

4.5 Digression: Extension to Graphs of Bounded Genus
Here, we briefly describe how to generalize the oracle described in this section for graphs embed-

dable onto surfaces of bounded genus. As shown by Chambers, Erickson, and Nayyeri in [12], we

can “planarize” an 𝑛-vertex graph𝐺 of genus 𝑔 by repeating the following procedure 𝑔 times: find a

short non-contractible cycle in𝑂 (𝑔𝑛 log𝑛) time using the algorithm of Erickson and Har-Peled [27],

and cut along it, duplicating its vertices and edges. This algorithm thus runs in 𝑂 (𝑔2𝑛 log𝑛) time

and produces an 𝑛-vertex planar graph 𝑃 with exactly 2𝑔 holes that contain all the copies of the

duplicated vertices. Each such hole, called a boundary cycle, is incident to 𝑂 (
√︁
𝑛/𝑔 log𝑔) vertices.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:17

To avoid clutter, we describe our oracle for 𝑔 = 𝑂 (1). We build our 𝑛4/3+2/(3𝜅) -space oracle for
𝑃 with 𝜅 = 𝑂 (1) ≥ 4 so the space is 𝑂 (𝑛3/2). Further, for each vertex 𝑢 ∈ 𝑉 (𝐺), for each of the

𝑂 (1) boundary cycles, we build a Voronoi diagram for 𝑃 with sites the vertices of the hole, and

an additive weight function defined by distances from 𝑢 in 𝐺 , i.e., 𝜔 (𝑠) = dist𝐺 (𝑢, 𝑠). Further, for
each boundary cycle 𝐶 , we build an MSSP data structure for 𝑃 with sources the vertices lying on 𝐶 .

Setting 𝜅′ = 𝑂 (1) ≥ 2 the space for theMSSP structures is 𝑂 (𝜅′𝑛1+1/𝜅′) = 𝑂 (𝑛3/2) since we have
𝑂 (1) boundary cycles, and the space for the Voronoi diagrams is 𝑂 (𝑛3/2) since there are 𝑂 (

√
𝑛)

vertices on boundary cycles.

Upon a query (𝑢, 𝑣), we first compute dist𝑃 (𝑢, 𝑣) in 𝑂 (log𝑛 log log𝑛) time (𝜅 = 𝑂 (1)) using the
planar distance oracle. First, note that dist𝑃 (𝑢, 𝑣) ≥ dist𝐺 (𝑢, 𝑣) Further, observe that dist𝑃 (𝑢, 𝑣) ≠
dist𝐺 (𝑢, 𝑣) only if some vertex on the shortest 𝑢-to-𝑣 path in 𝐺 has been duplicated, and thus

the path has been split. Suppose that this is the case. Let 𝑠 be the last vertex on the shortest

𝑢-to-𝑣 path in 𝐺 that has been duplicated. Note that 𝑠 is not known at query time. By choice of 𝑠 ,

dist𝐺 (𝑢, 𝑣) = dist𝐺 (𝑢, 𝑠)+dist𝑃 (𝑠, 𝑣). Thus, we can take care of this case by performing point location

queries in each of the 𝑂 (1) extra Voronoi diagrams stored for 𝑢 with target 𝑣 , and returning the

minimum distance computed by those queries. The query time is𝑂 (log𝑛 log log𝑛) since 𝑘 ′ = 𝑂 (1).
Thus, for 𝑛-vertex graphs embeddable to surfaces of constant genus, we obtain an oracle that

occupies space 𝑂 (𝑛3/2) and answers queries in 𝑂 (log𝑛 log log𝑛) time.

5 THE DISTANCE ORACLE
In this section we introduce our main distance oracle referenced in Theorem 1.1. The oracle is

based on an ®𝑟 -division, ®𝑟 = (𝑟𝑚, . . . , 𝑟1), where 𝑟𝑖 = 𝑛𝑖/𝑚 and𝑚 is a parameter. Suppose that we

want to compute dist𝐺 (𝑢, 𝑣). Let 𝑅0 = {𝑢} be the artificial level-0 region containing 𝑢 and 𝑅𝑖 ∈ R𝑖
be the level-𝑖 ancestor of 𝑅0. (Throughout the paper, we will use “𝑅𝑖” to refer specifically to the

level-𝑖 ancestor of 𝑅0 = {𝑢}, as well as to a generic region at level-𝑖 . Surprisingly, this will cause no

confusion.) Let 𝑡 be the unique index for which 𝑣 ∉ 𝑅𝑡 but 𝑣 ∈ 𝑅𝑡+1. For 0 ≤ 𝑖 ≤ 𝑡 , define 𝑢𝑖 to be the
last vertex on 𝜕𝑅𝑖 encountered on the shortest path from 𝑢 to 𝑣 . The main task of the distance query

algorithm is to compute the sequence (𝑢 = 𝑢0, . . . , 𝑢𝑡). Suppose that we know the identity of 𝑢𝑖 and

𝑡 > 𝑖 . Finding 𝑢𝑖+1 now amounts to a point location problem for 𝑣 in VD
∗ [𝑅out

𝑖+1, 𝜕𝑅𝑖+1, 𝜔], where
𝜔 (𝑠) is the distance from 𝑢𝑖 to 𝑠 ∈ 𝜕𝑅𝑖+1. However, we cannot afford to store an MSSP structure for

every (𝑅out
𝑖+1, 𝜕𝑅𝑖+1), since |𝑅out𝑖+1 | = Ω(|𝐺 |). Our point location routine narrows down the number of

possibilities for 𝑢𝑖+1 to at most two candidates in 𝑂 (𝜅 log2+𝑜 (1) 𝑛) time and then decides between

them using two recursive distance queries, but starting one level higher in the hierarchy. There are

about 2
𝑚
recursive calls in total, leading to a 𝑂 (2𝑚𝜅 log2+𝑜 (1) 𝑛) query time.

The data structure is composed of several parts. Parts (A) and (B) are explained below, while

parts (C)–(E) will be unveiled in Section 6.

(A) (MSSP Structures) For each 𝑖 ∈ [0,𝑚 − 1] and each region 𝑅𝑖 ∈ R𝑖 with parent 𝑅𝑖+1 ∈ R𝑖+1,
we store an MSSP data structure (Lemma 2.1(b)) for the graph 𝑅out𝑖 , and source set 𝜕𝑅𝑖 .

However, the structure only answers queries for 𝑠 ∈ 𝜕𝑅𝑖 and 𝑢, 𝑣 ∈ 𝑅out𝑖 ∩ 𝑅𝑖+1. Rather than
represent the full SSSP tree from each root on 𝑠 ∈ 𝜕𝑅𝑖 , theMSSP data structure only stores the

tree induced by 𝑅out𝑖 ∩𝑅𝑖+1, i.e., the parent of any vertex 𝑣 ∈ 𝑅out𝑖 ∩𝑅𝑖+1 is its nearest ancestor
𝑣 ′ in the SSSP tree such that 𝑣 ′ ∈ 𝑅out𝑖 ∩ 𝑅𝑖+1. If (𝑣 ′, 𝑣) is a “shortcut” edge corresponding to a

path in 𝑅out
𝑖+1, it has weight dist𝑅out

𝑖
(𝑣 ′, 𝑣).

We fix a 𝜅 and let the update time in the dynamic tree data structure be 𝑂 (𝜅𝑛1/𝜅) time. Thus,

the space
7
of this structure is𝑂 ([|𝑅out𝑖 ∩ 𝑅𝑖+1 | + |𝜕𝑅𝑖 | · |𝜕𝑅𝑖+1 |] · 𝜅𝑛1/𝜅) = 𝑂 (𝑟𝑖+1 · 𝜅𝑛1/𝜅) since

7
This is also the construction time which will be analyzed in Section 8.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:18 Charalampopoulos et al.

each edge in 𝑅out𝑖 ∩ 𝑅𝑖+1 is swapped into and out of the SSSP tree once [45], and the number

of shortcut edges on 𝜕𝑅𝑖+1 swapped into and out of the SSSP is at most |𝜕𝑅𝑖+1 | for each of

the |𝜕𝑅𝑖 | sources. Over all 𝑖 and Θ(𝑛/𝑟𝑖) choices of 𝑅𝑖 , the space is 𝑂 (𝑚𝜅𝑛1+1/𝑚+1/𝜅) since
𝑟𝑖+1/𝑟𝑖 = 𝑛1/𝑚 .

(B) (Voronoi Diagrams) For each 𝑖 ∈ [0,𝑚 − 2] and 𝑅𝑖 ∈ R𝑖 with parent 𝑅𝑖+1 ∈ R𝑖+1, and each

𝑞 ∈ 𝜕𝑅𝑖 , define VD∗out (𝑞, 𝑅𝑖+1) to be VD
∗ [𝑅out

𝑖+1, 𝜕𝑅𝑖+1, 𝜔], with 𝜔 (𝑠) = dist𝐺 (𝑞, 𝑠). The space
to store the dual diagram and its centroid decomposition is 𝑂 (|𝜕𝑅𝑖+1 |) = 𝑂 (

√
𝑟𝑖+1). Over all

choices for 𝑖, 𝑅𝑖 , and 𝑞, the space is 𝑂 (𝑚𝑛1+1/(2𝑚)) since
√︁
𝑟𝑖+1/𝑟𝑖 = 𝑛1/(2𝑚) .

Due to our tie-breaking rule in the definition of Vor(·), locating 𝑢𝑖+1 (𝑡 ≥ 𝑖 + 1) is tantamount to

performing a point location on a Voronoi diagram in part (B) of the data structure.

Lemma 5.1. Suppose that 𝑞 ∈ 𝜕𝑅𝑖 and 𝑣 ∉ 𝑅𝑖+1. Consider the Voronoi diagram represented by
VD
∗
out
(𝑞, 𝑅𝑖+1) with sites 𝜕𝑅𝑖+1 and additive weights defined by distances from 𝑞 in𝐺 . Then 𝑣 ∈ Vor(𝑠)

if and only if 𝑠 is the last vertex of 𝜕𝑅𝑖+1 that lies on the shortest path from 𝑞 to 𝑣 in 𝐺 , and 𝑑𝜔 (𝑠, 𝑣) =
dist𝐺 (𝑞, 𝑣).

Proof. By definition, 𝑑𝜔 (𝑠, 𝑣) is the length of the shortest path from 𝑞 to 𝑣 that passes through 𝑠

and whose 𝑠-to-𝑣 suffix does not leave 𝑅out
𝑖+1. Thus, 𝑑

𝜔 (𝑠, 𝑣) ≥ dist𝐺 (𝑞, 𝑣) for every 𝑠 , and 𝑑𝜔 (𝑠, 𝑣) =
dist𝐺 (𝑞, 𝑣) for some 𝑠 . Because of our assumption that all edge-weights are strictly positive, and

our tie-breaking rule for preferring larger 𝜔-values in the definition of Vor(·), if 𝑣 ∈ Vor(𝑠) then 𝑠
must be the last 𝜕𝑅𝑖+1-vertex on the shortest 𝑞-to-𝑣 path. □

5.1 TheQuery Algorithm
A distance query is given 𝑢, 𝑣 ∈ 𝑉 (𝐺). We begin by identifying the level-0 region 𝑅0 = {𝑢} ∈ R0

and call the function Dist(𝑢, 𝑣, 𝑅0). In general, the function Dist(𝑢𝑖 , 𝑣, 𝑅𝑖) takes as arguments a

region 𝑅𝑖 , a source vertex 𝑢𝑖 on the boundary 𝜕𝑅𝑖 , and a target vertex 𝑣 ∉ 𝑅𝑖 . It returns a value 𝑑

such that

dist𝐺 (𝑢𝑖 , 𝑣) ≤ 𝑑 ≤ dist𝑅out

𝑖
(𝑢𝑖 , 𝑣). (1)

Note that 𝑅out
0

= 𝐺 , so the initial call to this function correctly computes dist𝐺 (𝑢, 𝑣). When 𝑣 is

“close” to 𝑢𝑖 (𝑣 ∈ 𝑅out𝑖 ∩ 𝑅𝑖+1) it computes dist𝑅out

𝑖
(𝑢𝑖 , 𝑣) without recursion, using part (A) of the data

structure. When 𝑣 ∈ 𝑅out
𝑖+1 it performs point location using the function CentroidSearch, which

culminates in up to two recursive calls toDist on the level-(𝑖 + 1) region 𝑅𝑖+1. Thus, the correctness
of Dist hinges on whether CentroidSearch correctly computes distances when 𝑣 ∈ 𝑅out

𝑖+1.

Algorithm 3 Dist(𝑢𝑖 , 𝑣, 𝑅𝑖)
Input: A region 𝑅𝑖 , source 𝑢𝑖 ∈ 𝜕𝑅𝑖 and 𝑣 ∉ 𝑅𝑖 .
Output: A value 𝑑 such that dist𝐺 (𝑢𝑖 , 𝑣) ≤ 𝑑 ≤ dist𝑅out

𝑖
(𝑢𝑖 , 𝑣).

1: if 𝑣 ∈ 𝑅out𝑖 ∩ 𝑅𝑖+1 then ⊲ I.e., 𝑖 = 𝑡

2: return 𝑑 ← dist𝑅out

𝑖
(𝑢𝑖 , 𝑣) ⊲ Part (A)

3: end if ⊲ 𝑣 ∈ 𝑅out
𝑖+1

4: return 𝑑 ← CentroidSearch(VD∗
out
(𝑢𝑖 , 𝑅𝑖+1), 𝑣)

The procedureCentroidSearch is an adaptation of SimpleCentroidSearch.CentroidSearch
is given as input 𝑢𝑖 ∈ 𝜕𝑅𝑖 , 𝑣 ∈ 𝑅out𝑖+1, VD

∗
out

= VD
∗
out
(𝑢𝑖 , 𝑅𝑖+1), and a subtree 𝑇 ∗ of the centroid

decomposition of VD
∗
out

. Once again, if omitted, 𝑇 ∗ is the full centroid decomposition. It ultimately

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:19

Fig. 6. Here 𝑓 ∗ is a degree-3 vertex in VD
∗
out
(𝑢𝑖 , 𝑅𝑖+1), corresponding to a trichromatic face 𝑓 on vertices

𝑦0, 𝑦1, 𝑦2, which are in the Voronoi cells of 𝑠0, 𝑠1, 𝑠2 on the boundary 𝜕𝑅out𝑖+1 . The shortest 𝑠 𝑗 -to-𝑦 𝑗 paths partition
𝑉 (𝑅out

𝑖+1) into six parts: the three shortest paths and the three regions bounded by them and by 𝑓 . Let 𝑒∗
0
, 𝑒∗
1
, 𝑒∗
2

be the edges in VD∗
out

dual to {𝑦0, 𝑦2}, {𝑦1, 𝑦0}, {𝑦2, 𝑦1}. In the centroid decomposition 𝑒∗
0
, 𝑒∗
1
, 𝑒∗
2
are in separate

subtrees of 𝑓 ∗. Let 𝑓 ∗
𝑗
be the child of 𝑓 ∗ ancestral to 𝑒∗

𝑗
, which is either 𝑒∗

𝑗
itself, or a trichromatic face to the

right of the “chord” (𝑠 𝑗 , . . . , 𝑦 𝑗 , 𝑦 𝑗−1, . . . , 𝑠 𝑗−1). CentroidSearch locates the site whose Voronoi cell contains
𝑣 via recursion. It calls each of SitePathIndicator and ChordIndicator thrice, in order to find which of
the 6 parts contains 𝑣 . If 𝑣 lies on an 𝑠 𝑗 -to-𝑦 𝑗 path the CentroidSearch recursion terminates; otherwise it
recurses on the correct child 𝑓 ∗

𝑗
of 𝑓 ∗.

finds 𝑢𝑖+1 ∈ 𝜕𝑅𝑖+1 for which 𝑣 ∈ Vor(𝑢𝑖+1) and returns

𝜔 (𝑢𝑖+1) +Dist(𝑢𝑖+1, 𝑣, 𝑅𝑖+1) Line 5 or 13 of CentroidSearch
≤ dist𝐺 (𝑢𝑖 , 𝑢𝑖+1) + dist𝑅out

𝑖+1
(𝑢𝑖+1, 𝑣) Defn. of 𝜔 ; guarantee of Dist (Eqn. (1))

= dist𝐺 (𝑢𝑖 , 𝑣). Lemma 5.1

The main difficulty in implementing CentroidSearch is that we cannot afford to storeMSSP
structures for 𝑅out

𝑖+1.CentroidSearch can be seen as an implementation of SimpleCentroidSearch
with the following modifications.

• Distances from sites of VD
∗
out
(𝑢𝑖 , 𝑅𝑖+1) to vertices in 𝑅out𝑖+1 are now computed usingDist rather

than MSSP queries. In particular, CentroidSearch is aware of the recursive decomposition

of 𝐺 .

• Line 12 of SimpleCentroidSearch is replaced by a call to a procedure SitePathIndicator,
which returns a boolean indicating whether 𝑣 is on the shortest 𝑠 𝑗 -to-𝑦 𝑗 path.

• Line 14 of SimpleCentroidSearch is replaced by a call to a procedure ChordIndicator,
which returns whether 𝑣 lies strictly to the right of the oriented path (𝑠 𝑗 , . . . , 𝑦 𝑗 , 𝑦 𝑗−1, . . . , 𝑠 𝑗−1).
We call such a path a chord; these are formally defined in Section 6.2.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:20 Charalampopoulos et al.

Algorithm 4 CentroidSearch(VD∗
out
(𝑢𝑖 , 𝑅𝑖+1), 𝑣,𝑇 ∗)

Input: The dual representation VD
∗
out

= VD
∗
out
(𝑢𝑖 , 𝑅𝑖+1) of a Voronoi diagram with additive

weights 𝜔 (𝑠) = dist𝐺 (𝑢𝑖 , 𝑠), a vertex 𝑣 ∈ 𝑅out𝑖+1, and a centroid decomposition tree 𝑇 ∗ of a subtree of
VD
∗
out

. If the last argument is omitted, 𝑇 ∗ is the decomposition tree for the entire VD
∗
out

.

Require: Some edge of the boundary of the Voronoi cell containing 𝑣 in VD
∗
out

is a leaf in 𝑇 ∗.
Output: The distance dist𝐺 (𝑢𝑖 , 𝑣).

1: 𝑓 ∗ ← root of 𝑇 ∗

2: if 𝑇 ∗ is a single edge then
3: 𝑠1, 𝑠2 ← sites corresponding to 𝑓 ∗ ⊲ Candidates for 𝑢𝑖+1
4: for 𝑗 = 1, 2 do
5: 𝑑 𝑗 ← 𝜔 (𝑠 𝑗) +Dist(𝑠 𝑗 , 𝑣, 𝑅𝑖+1)
6: end for
7: 𝑘 ← argmin𝑗 (𝑑 𝑗)
8: return (𝑠𝑘 , 𝑑𝑘)
9: end if
10: 𝑠0, 𝑠1, 𝑠2 ← sites corresponding to 𝑓 ∗

11: for 𝑗 = 0, 1, 2 do
12: if SitePathIndicator(VD∗

out
(𝑢𝑖 , 𝑅𝑖+1), 𝑣, 𝑓 ∗, 𝑗) returns True then

13: return 𝜔 (𝑠 𝑗) +Dist(𝑠 𝑗 , 𝑣, 𝑅𝑖+1) ⊲ 𝑠 𝑗 = 𝑢𝑖+1
14: else if ChordIndicator(VD∗

out
(𝑢𝑖 , 𝑅𝑖+1), 𝑣, 𝑓 ∗, 𝑗) returns True then

15: 𝑇 ∗𝑗 ← subtree of 𝑇 ∗ rooted at the child of 𝑓 ∗ containing the leaf edge of VD
∗
out

repre-

senting 𝑒∗𝑗
16: return CentroidSearch(VD∗

out
(𝑢𝑖 , 𝑅𝑖+1), 𝑣,𝑇 ∗𝑗)

17: end if
18: end for

Lemma 5.2. CentroidSearch correctly computes dist𝐺 (𝑢𝑖 , 𝑣).

Proof. Let 𝑠 be the site of VD∗
out

for which 𝑣 ∈ Vor(𝑠). Apart from Lines 5, 13, CentroidSearch
is just a different implementation of SimpleCentroidSearch. Thus, it follows directly from the

proof of Theorem 3.2 that CentroidSearch either correctly identifies the site 𝑠 in Line 12, or it

identifies two candidates for 𝑠 in Line 3. First, we have to show that the additive distance from 𝑠 ,

computed in Line 5 or in Line 13 is indeed dist𝐺 (𝑢𝑖 , 𝑣). In either of the two cases, we have

𝜔 (𝑠) +Dist(𝑠, 𝑣, 𝑅𝑖+1) ≤ dist𝐺 (𝑢𝑖 , 𝑠) + dist𝑅out

𝑖+1
(𝑠, 𝑣) = dist𝐺 (𝑢𝑖 , 𝑣).

Finally, if there is another candidate 𝑠′ different than 𝑠 identified in Line 3, we clearly have 𝜔 (𝑠′) +
Dist(𝑠′, 𝑣, 𝑅𝑖+1) ≥ dist𝐺 (𝑢𝑖 , 𝑣). This completes the proof. □

The main challenge is to efficiently implement the SitePathIndicator and ChordIndicator
functions, i.e., to solve the restricted point location problem in 𝑅out

𝑖+1, depicted in Figure 6. We will

show how to solve these two point location problems in 𝑂 (𝜅 log1+𝑜 (1) 𝑛) time.

6 CHORDS, PIECES, AND THE INDICATOR FUNCTIONS
Recall that the main problem faced by CentroidSearch is to determine whether 𝑣 lies on, left of,

or right of the chord

𝐶 = (𝑠 𝑗 , . . . , 𝑦 𝑗 , 𝑦 𝑗−1, . . . , 𝑠 𝑗−1),

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:21

which is a simple path joining 𝜕𝑅𝑖+1-vertices in 𝑅out𝑖+1. The case when 𝑣 ∈ 𝐶 (which is detected by

SitePathIndicator) is relatively simple, so for the purpose of this overview we shall assume 𝑣 ∉ 𝐶 .

The index 𝑡 is such that 𝑣 ∈ 𝑅out𝑡 ∩ 𝑅𝑡+1 so it suffices to restrict our attention to 𝑅out𝑡 . Note,

however, that 𝐶 can cross 𝜕𝑅𝑡 an unbounded number of times, meaning that the projection of 𝐶

onto 𝑅out𝑡 consists of an unbounded number of chords, i.e., subpaths of 𝐶 in 𝑅out𝑡 joining vertices of

𝜕𝑅𝑡 . These chords partition 𝑅
out

𝑡 into a set P of pieces.
The strategy of ChordIndicator is to find any chord 𝐶 ∈ C that lies on the boundary of 𝑣 ’s

piece in P. It follows that the left/right relationship between 𝑣 and 𝐶 is identical to the left/right

relationship between 𝑣 and 𝐶 . Thus, we have reduced our problem to several structured point

location problems, among them locating 𝑣 in a certain set of pieces, and determining the relationship

between 𝑣 and a single chord 𝐶 . In reality things are slightly more complicated, as we decompose

C (and hence P) into three parts corresponding to (1) all chords in the 𝑠 𝑗 -to-𝑦 𝑗 path that do not

include 𝑦 𝑗 , (2) all chords in the 𝑠 𝑗−1-to-𝑦 𝑗−1 path that do not include 𝑦 𝑗−1, and (3) the one chord (if

any) that includes 𝑦 𝑗 and 𝑦 𝑗−1.

Roadmap for Section 6. The sketch above motivates several useful subroutines. We need to be

able to decide if 𝑣 lies on, left of, or right of a chord𝐶 , where𝐶 is either a shortest path between 𝜕𝑅𝑡

vertices or the subpath of𝐶 between 𝜕𝑅𝑡 vertices that goes through 𝑦 𝑗 and 𝑦 𝑗−1. These two types of
queries are addressed in Lemmas 6.1 and 6.2 in Section 6.1. Section 6.1 also introduces parts (C) and

(D) of the data structure, and Lemma 6.3 shows that a special case of SimpleCentroidSearch can

be implemented efficiently. In particular, if VD
∗
is a Voronoi diagram for 𝑅out𝑡 and 𝑣 ∈ 𝑅out𝑡 ∩ 𝑅𝑡+1,

SimpleCentroidSearch(VD∗, 𝑣) can be solved in the same time bound as in Theorem 3.2, using

parts (A,D) of the data structure in lieu of a full MSSP structure.

Section 6.2 analyzes the properties of chords and pieces, and introduces part (E) of the data

structure, which represents numerous chord/piece sets space-efficiently using persistent data struc-

tures. The SitePathIndicator andChordIndicator functions are explained in Sections 6.3 and 6.4,

respectively. A key subroutine of ChordIndicator is PieceSearch, which solves a certain point

location problem with respect to an ensemble of chords and pieces; it is presented in Section 6.4.1.

6.1 Auxiliary Lemmas and a Special Case of SimpleCentroidSearch
We begin with the following lemma, which is used in SitePathIndicator,PieceSearch, and
ChordIndicator.

Lemma 6.1. Consider a region 𝑅𝑡 , two vertices 𝑎, 𝑏 ∈ 𝜕𝑅𝑡 , and a vertex 𝑣 ∈ 𝑅out𝑡 ∩ 𝑅𝑡+1. Let 𝐶 be the
shortest 𝑎-to-𝑏 path in 𝑅out𝑡 . We can test whether 𝑣 lies on 𝐶 and whether 𝑣 lies to the right of 𝐶 in
𝑂 (𝜅 log log𝑛) time, using part (A) of the data structure.

Proof. Let 𝑎′, 𝑏′ be pendant vertices attached to 𝑎, 𝑏, respectively, embedded inside the face of

𝑅out𝑡 bounded by 𝜕𝑅𝑡 . We ask theMSSP structure (part (A)) for the lowest common ancestor,𝑤 , of 𝑣

and 𝑏′ in the shortcutted SSSP tree rooted at 𝑎′. It follows that 𝑣 lies on 𝐶 if and only if 𝑣 = 𝑤 . We

henceforth suppose that this is not the case. Then, the shortest 𝑎′-to-𝑣 and 𝑎′-to-𝑏′ paths branch at

some point. The LCA query also returns the two tree edges 𝑒𝑣, 𝑒𝑏′ leading to 𝑣 and 𝑏′, respectively.
Let 𝑒𝑤 be the edge connecting𝑤 to its parent.

8
If the clockwise order around𝑤 is 𝑒𝑤, 𝑒𝑏′ , 𝑒𝑣 then

𝑣 lies to the right of 𝐶; otherwise it lies to the left. Note that if the shortest 𝑎′-to-𝑏′ and 𝑎′-to-𝑣
paths in 𝐺 branch at a point in 𝑅out

𝑡+1, then 𝑤 will be the nearest ancestor of the branchpoint on

8
The purpose of adding 𝑎′, 𝑏′ is to make sure all three edges 𝑒𝑤 , 𝑒𝑣, 𝑒𝑏′ exist. The vertices 𝑎

′, 𝑏′ are not represented in the

MSSP structure. The edges (𝑎′, 𝑎) and (𝑏,𝑏′) can be simulated by inserting them between the two boundary edges on 𝜕𝑅𝑡

adjacent to 𝑎 and 𝑏, respectively.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:22 Charalampopoulos et al.

𝜕𝑅𝑡+1 and one or both of 𝑒𝑣, 𝑒𝑏′ may be “shortcut” edges in the MSSP structure. See Figure 7 for an

illustration. □

Fig. 7. The 𝑎-to-𝑏 shortest path, which may pass through 𝑅out
𝑡+1, in which case it is represented in the MSSP

structure with shortcut edges (solid, angular edges).

Lemma 6.2. Consider a vertex 𝑢 ∈ 𝑅𝑡 and an edge {𝑦0, 𝑦1} of 𝑅out𝑡 . For 𝑗 ∈ {0, 1}, let 𝑥 𝑗 be the last
vertex of the shortest 𝑢-to-𝑦 𝑗 path that lies on 𝜕𝑅𝑡 , and suppose 𝑥0 ≠ 𝑥1. Let 𝐶 be the concatenation
of the shortest 𝑥1-to-𝑦1 path in 𝑅out𝑡 , the edge {𝑦1, 𝑦0}, and the reverse of the shortest 𝑥0-to-𝑦0 path in
𝑅out𝑡 . Further, for 𝑗 ∈ {0, 1}, let 𝑥 𝑗 be the last vertex of the shortest 𝑥 𝑗 -to-𝑦 𝑗 path that lies on 𝜕𝑅out

𝑡+1 (if it
exists).
Given 𝑅𝑡 , 𝑢, 𝑦 𝑗 , 𝑥 𝑗 , dist𝐺 (𝑢, 𝑥 𝑗), and 𝑥 𝑗 for 𝑗 ∈ {0, 1}, and a vertex 𝑣 ∈ 𝑅out𝑡 ∩ 𝑅𝑡+1, we can test

whether 𝑣 lies on 𝐶 and whether 𝑣 lies to the right of 𝐶 in 𝑂 (𝜅 log log𝑛) time, using part (A) of the
data structure.

Proof. Consider the following distance function
ˆ𝑑 for vertices 𝑧 ∈ 𝑅out𝑡 :

ˆ𝑑 (𝑧) = min

{
dist𝐺 (𝑢, 𝑥0) + dist𝑅out

𝑡
(𝑥0, 𝑧), dist𝐺 (𝑢, 𝑥1) + dist𝑅out

𝑡
(𝑥1, 𝑧)

}
.

Observe that the terms involving 𝑢 are given and, if 𝑧 ∈ 𝑅out𝑡 ∩ 𝑅𝑡+1, the other terms can be queried

in 𝑂 (𝜅 log log𝑛) time using part (A). It follows that the shortest path forest w.r.t.
ˆ𝑑 has two trees,

rooted at 𝑥0 and 𝑥1. Using part (A) of the data structure we compute
ˆ𝑑 (𝑣), which reveals the

𝑗★ ∈ {0, 1} such that 𝑣 is in 𝑥 𝑗★’s tree. Let 𝑓 be a face on which 𝑦0, 𝑦1 lie, such that the third vertex

of 𝑓 lies to the left of 𝐶 . At this point we break into two cases, depending on whether 𝑓 is in

𝑅out𝑡 ∩ 𝑅𝑡+1 or in 𝑅out𝑡+1. Without loss of generality, we assume that 𝑗★ = 1 and depict only this case

in Figure 8(a,b).

Case a. Suppose that 𝑓 is in 𝑅out𝑡 ∩ 𝑅𝑡+1. Let 𝑦
𝑓

1
be a pendant vertex attached to 𝑦1 embedded

inside 𝑓 and let 𝑥 ′
1
be a pendant vertex attached to 𝑥1 embedded inside the face of 𝑅out𝑡 bounded by

𝜕𝑅𝑡 . The shortest 𝑥
′
1
-to-𝑦

𝑓

1
and 𝑥 ′

1
-to-𝑣 paths share a common prefix. We query the MSSP structure

(part (A)) to get the lowest common ancestor𝑤 of 𝑦
𝑓

1
and 𝑣 and the three edges 𝑒

𝑦
𝑓

1

, 𝑒𝑣, 𝑒𝑤 around

𝑤 . If 𝑣 = 𝑤 then 𝑣 is on the shortest 𝑥1-to-𝑦
𝑓

1
path and hence on 𝐶 . If 𝑣 ≠ 𝑤 then all three edges

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:23

(a)

(b)

Fig. 8. An illustration of the setting in Lemma 6.2. (a) The case where 𝑓 lies in 𝑅out𝑡 ∩ 𝑅𝑡+1. (b) The case where
𝑓 lies in 𝑅out

𝑡+1, 𝑥0, 𝑥1 are the last 𝜕𝑅𝑡+1 vertices on the 𝑥0-to-𝑦0 and 𝑥1-to-𝑦1 paths. If the shortest 𝑥 ′
1
-to-𝑥1 and

𝑥 ′
1
-to-𝑣 paths branch, we can answer the query as in (a). If 𝑥 ′

1
-to-𝑥1 is a prefix of 𝑥 ′

1
-to-𝑣 , 𝑒𝑣 = (𝑥1, 𝑣), and

𝑒𝑣 is a shortcut edge (which implies 𝑣 ∈ 𝜕𝑅𝑡+1), then we can use the clockwise order of 𝑥1, 𝑣, 𝑥0 around the
hole on 𝜕𝑅𝑡+1 to determine whether 𝑣 lies to the right of 𝐶 . (Not depicted: the case that 𝑒𝑣 is an original edge,
where 𝑣 may not be on 𝜕𝑅𝑡+1.)

𝑒
𝑦
𝑓

1

, 𝑒𝑣, 𝑒𝑤 are distinct and we determine whether 𝑣 is to the right of 𝐶 by examining the circular

order of the three edges incident to 𝑤 , as in the proof of Lemma 6.1. (If 𝑗★ = 0 then we would

reverse the answer due to the reversed orientation of the 𝑥0-to-𝑦0 subpath w.r.t. 𝐶 .) See Figure 8(a)

for an illustration.

Case b. Now suppose 𝑓 lies in 𝑅out
𝑡+1. We first ask theMSSP structure of part (A) for the lowest

common ancestor 𝑤 of 𝑥1 and 𝑣 in the shortcutted SSSP tree rooted at 𝑥 ′
1
, and also get the three

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:24 Charalampopoulos et al.

incident edges 𝑒𝑥1 , 𝑒𝑣, 𝑒𝑤 . If𝑤 = 𝑣 then 𝑣 ∈ 𝐶 and we are done, so we proceed under the assumption

that𝑤 ≠ 𝑣 . Thus, the edges 𝑒𝑣 and 𝑒𝑤 exist and are different. If𝑤 ≠ 𝑥1 then 𝑒𝑥1 also exists, and once

again we determine whether 𝑣 is to the right of 𝐶 from the circular order of 𝑒𝑣, 𝑒𝑤, 𝑒𝑥1 around𝑤 . If

𝑤 = 𝑥1, 𝑒𝑥1 does not exist. In this case, let 𝑣 be the endpoint of 𝑒𝑣 that is not 𝑥1. If 𝑒𝑣 is a shortcut

edge, it implies 𝑣 ∈ 𝜕𝑅𝑡+1 and we can determine whether 𝑣 is to the right of 𝐶 from the circular

order of 𝑥1, 𝑥0 and 𝑣 along 𝜕𝑅𝑡+1. If 𝑒𝑣 is an original edge, we have 𝑒𝑣 ∈ 𝑅out𝑡 ∩ 𝑅𝑡+1. By viewing

(𝑥1, 𝑥0) as a virtual shortcut edge, the left/right relationship between 𝑣 and 𝐶 now depends on the

circular order of 𝑒𝑣, 𝑒𝑤, (𝑥1, 𝑥0) around 𝑥1.9 See Figure 8(b) for an illustration. □

Let us now introduce parts (C) and (D) of our data structure. The reason for storing part (C) will

become clear in subsequent sections. One of the main reasons for storing the Site Tables of part
(D) is so that we can invoke Lemma 6.2, which requires that we provide 𝑥0, 𝑥1. The Side Tables of
part (D) are stored so that we can handle a simple case in the ChordIndicator function where the

chord does not interact at all with some specific part of the graph that contains 𝑣 ; they store the

answer for this whole part.

(C) (More Voronoi Diagrams) For each 𝑖 ∈ [1,𝑚 − 1], each 𝑅𝑖 ∈ R𝑖 , and each 𝑞 ∈ 𝜕𝑅𝑖 , we store
VD
∗
out
(𝑞, 𝑅𝑖), which is VD

∗ [𝑅out𝑖 , 𝜕𝑅𝑖 , 𝜔], where 𝜔 (𝑠) = dist𝐺 (𝑞, 𝑠). The total space for these
diagrams is 𝑂 (𝑚𝑛) and is dominated by part (B).

(D) (Site Tables; Side Tables) For each 𝑖 and Voronoi diagram VD
∗
out

= VD
∗
out
(𝑢′, 𝑅𝑖) from part

(B) or (C), we store the following for each node 𝑓 ∗ in the centroid decomposition of VD
∗
out

,

with 𝑦 𝑗 , 𝑠 𝑗 , 𝑗 ∈ {0, 1, 2} defined as usual. Let 𝑅𝑖′ ∈ R𝑖′ be the ancestor of 𝑅𝑖 at level 𝑖′ ≥ 𝑖 . For
each 𝑖′ and 𝑗 ∈ {0, 1, 2} we store the pair (𝑞, 𝑥) consisting of the first and last vertices on the

shortest 𝑠 𝑗 -to-𝑦 𝑗 path that lie on 𝜕𝑅𝑖′ . We also store dist𝐺 (𝑢′, 𝑥).
It may be that the shortest 𝑠 𝑗 -to-𝑦 𝑗 path does not intersect 𝜕𝑅𝑖′ , in which case (𝑞, 𝑥) do not

exist. In this case we store a single bit indicating whether 𝑅out
𝑖′ lies to the right or left of the

site-centroid-site chord (𝑠 𝑗 , . . . , 𝑦 𝑗 , 𝑦 𝑗−1, . . . , 𝑠 𝑗−1) in 𝑅out𝑖 . The space cost for part (D) is 𝑂 (𝑚)
times the space cost of (B) and (C).

The following lemma is a direct consequence of Lemma 6.2, which lets us implement the non-

trivial parts of SimpleCentroidSearch in the same time bound guaranteed by Theorem 3.2.

Lemma 6.3. Suppose VD∗ = VD
∗
out
(𝑢′, 𝑅𝑡) is one of the Voronoi diagrams stored in part (C), and

𝑣 ∈ 𝑅out𝑡 ∩ 𝑅𝑡+1. Then SimpleCentroidSearch(VD∗, 𝑣) can be executed in 𝑂 (𝜅 log𝑛 log log𝑛) time,
using parts (A) and (D) of the data structure. (I.e., it does not require a full MSSP structure for 𝑅out𝑡 .)

Proof. Because 𝑣 ∈ 𝑅out𝑡 ∩𝑅𝑡+1, the distances in Lines 5 and 13 can be computed in𝑂 (𝜅 log log𝑛)
time using part (A). The other non-trivial steps are Lines 12 and 14, where we check whether 𝑣 lies on

the 𝑠 𝑗 -to-𝑦 𝑗 path, or strictly to the right of the (𝑠 𝑗 , . . . , 𝑦 𝑗 , 𝑦 𝑗−1, . . . , 𝑠 𝑗−1) chord. Lemma 6.2 says that

these queries can also be answered in𝑂 (𝜅 log log𝑛) time, if they are also given the boundary vertices

𝑥0, 𝑥1, 𝑥2 ∈ 𝜕𝑅𝑡+1, which are stored in part (D). Thus, the overall time for SimpleCentroidSearch
(including recursive calls) is 𝑂 (𝜅 log𝑛 log log𝑛). □

6.2 Chords and Pieces
We begin by defining the key concepts of our point location method: chords, laminar chord sets,
pieces, and the occludes relation.

Definition 6.1. (Chords) Fix an 𝑅 in the ®𝑟 -division and two vertices 𝑐0, 𝑐1 ∈ 𝜕𝑅. An oriented

simple path
−−→𝑐0𝑐1 is a chord of 𝑅out if it is contained in 𝑅out and is internally vertex-disjoint from 𝜕𝑅.

When the orientation is irrelevant we write it as 𝑐0𝑐1.
9
A possible implementation is to choose an original edge 𝑒′ on 𝜕𝑅𝑡+1 incident to 𝑥1 as a proxy of the virtual shortcut edge

(𝑥1, 𝑥0) , and determine the relationship by the circular order of 𝑒𝑣, 𝑒𝑤 , 𝑒′ around 𝑥1.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:25

Fig. 9. A laminar set of chords partition 𝑅out into pieces. Observe that the chords separating pieces 𝑃5–𝑃9
overlap in certain prefixes. The piece tree is indicated by diamond vertices and pink edges. Note that two
pieces (e.g. 𝑃5 and 𝑃9) may share a boundary, but not be adjacent.

Definition 6.2. (Laminar Chord Sets) A set of chords C for 𝑅out is laminar (non-crossing) if for
any two such chords 𝐶 =

−−→𝑐0𝑐1,𝐶′ = −−→𝑐2𝑐3, if there exists a 𝑣 ∈ (𝐶 ∩𝐶′) \ 𝜕𝑅 then the subpaths from

𝑐0 to 𝑣 and from 𝑐2 to 𝑣 are identical; in particular 𝑐0 = 𝑐2 in this case.

The orientation of chords does not always coincide with a natural orientation of paths defined by

the algorithm. For example, in Figure 6, the oriented chord
−−→𝑠0𝑠2 = (𝑠0, . . . , 𝑦0, 𝑦2, . . . , 𝑠2) is composed

of three parts: a shortest 𝑠0-to-𝑦0 path (whose natural orientation coincides with that of
−−→𝑠0𝑠2), the

edge {𝑦0, 𝑦2} (which has no natural orientation in this context), and the shortest 𝑠2-to-𝑦2 path

(whose natural orientation is the reverse of its orientation in
−−→𝑠0𝑠2). The orientation serves two

purposes. In Definition 6.1 we can speak unambiguously about the parts of 𝑅out to the right and
left of −−→𝑠0𝑠2. In Definition 6.2 the role of the orientation is to ensure that the partition of 𝑅out into

pieces induced by C can be represented by a tree, as we show in Lemma 6.4.

Definition 6.3. (Pieces) A laminar chord set C for 𝑅out partitions the faces of 𝑅out into pieces,

excluding the face on 𝜕𝑅. Two faces 𝑓 , 𝑔 are in the same piece iff 𝑓 ∗ and 𝑔∗ are connected by a path

in (𝑅out)∗ that avoids duals of edges in C and of edges along the boundary cycle on 𝜕𝑅. A piece is

regarded as the subgraph induced by its faces, i.e., it includes their constituent vertices and edges.

Two pieces 𝑃1, 𝑃2 are adjacent if there is an edge 𝑒 on the boundary of 𝑃1 and 𝑃2 and 𝑒 is in a unique
chord of C. See Figure 9.

Lemma 6.4. Suppose that C is a laminar chord set for 𝑅out, P = P(C) is the corresponding piece set
and E are the pairs of adjacent pieces. Then T = (P, E) is a tree, called the piece tree induced by C.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:26 Charalampopoulos et al.

Proof. The claim is clearly true when C contains zero or one chords, so we will reduce the

general case to this case via a peeling argument. We will find a piece 𝑃 with degree 1 in T , remove

it and the chord bounding it, and conclude by induction that the truncated instance is a tree.

Reattaching 𝑃 implies that T is a tree.

Let 𝐶 =
−−→𝑐0𝑐1 ∈ C be a chord such that no edge of any other chord appears strictly to one side

of 𝐶 , say to the right of 𝐶 . Let 𝑃 be the piece to the right of 𝐶 . (In Figure 9 the chords bounding

𝑃1, 𝑃2, 𝑃11, 𝑃12 would be eligible to be 𝐶 .) Let 𝐶 = (𝑐0 = 𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑘 = 𝑐1) and 𝑣 𝑗★ be such that

the edges of the suffix (𝑣 𝑗★, . . . , 𝑣𝑘) are on no other chord, meaning the vertices {𝑣 𝑗★+1, . . . , 𝑣𝑘−1}
are on no other chord. Let 𝑔 𝑗 be the face to the left of (𝑣 𝑗 , 𝑣 𝑗+1). It follows that there is a path from

𝑔∗
𝑗★

to 𝑔∗
𝑘−1 in (𝑅

out)∗ that avoids the duals of all edges in C and along 𝜕𝑅. All pieces adjacent to

𝑃 contain some face among {𝑔 𝑗★, . . . , 𝑔𝑘−1}, but these are in a single piece, hence 𝑃 corresponds

to a degree-1 vertex in T . Let 𝑃 be bounded by 𝐶 and an interval 𝐵 of the boundary cycle on 𝜕𝑅.

Obtain the “new” 𝑅out by cutting along 𝐶 and removing 𝑃 , the new 𝜕𝑅 by substituting 𝐶 for 𝐵, and

the new chord-set C by removing 𝐶 and trimming any chords that shared a non-empty prefix with

𝐶 . By induction the resulting piece-adjacency graph is a tree; reattaching 𝑃 as a degree-1 vertex

shows that T is a tree. □

Definition 6.4. (Occluding Chords; Maximal Chords) Fix 𝑅out, chord 𝐶 , and two faces 𝑓 , 𝑔,

neither of which is the hole defined by 𝜕𝑅. If 𝑓 and 𝑔 are on opposite sides of 𝐶 , we say that from

vantage 𝑓 , 𝐶 occludes 𝑔. Let C be a set of chords. We say 𝐶 ∈ C is maximal in C with respect to a

vantage 𝑓 if there is no 𝐶′ ∈ C such that 𝐶′ occludes a strict superset of the faces that 𝐶 occludes.

(Note that the orientation of chords is irrelevant to the occludes relation.)

It follows from Definition 6.4 that if C is laminar, the maximal chords with respect to 𝑓 will

intersect the boundary of 𝑓 ’s piece in P(C).
We can also speak unambiguously about a chord 𝐶 occluding a vertex or edge not on 𝐶 , from a

certain vantage, which itself may be a face, a vertex, or a piece. Specifically, we can say that from

some vantage, 𝐶 occludes an interval of the boundary cycle on 𝜕𝑅, say according to a clockwise

traversal around the hole on 𝜕𝑅 in 𝑅out.10 This will be used in the ChordIndicator procedure of
Section 6.4.2.

We next present part (E) of our data structure, which will be used to implement the functions

SitePathIndicator and ChordIndicator.
(E) (Chord Trees; Piece Trees) For each 𝑖 ∈ [1,𝑚−1], each 𝑅𝑖 ∈ R𝑖 , and each source 𝑞 ∈ 𝜕𝑅𝑖 , we

store the SSSP tree from 𝑞 with respect to 𝐺 induced by 𝜕𝑅𝑖 as a chord tree 𝑇
𝑅𝑖
𝑞 . In particular,

the parent of 𝑥 ∈ 𝜕𝑅𝑖 in 𝑇𝑅𝑖
𝑞 is the nearest ancestor in the SSSP tree from 𝑞 that lies on 𝜕𝑅𝑖 .

Every edge of 𝑇
𝑅𝑖
𝑞 is designated a chord if the corresponding path is entirely contained in

𝑅out𝑖 , or a non-chord otherwise. Define C𝑅𝑖𝑞 to be the set of all chords in 𝑇
𝑅𝑖
𝑞 , oriented away

from 𝑞; this is clearly a laminar set since shortest paths are unique and all prefixes of shortest

paths are shortest paths. Define P𝑅𝑖
𝑞 to be the corresponding partition of 𝑅out𝑖 into pieces, and

T𝑅𝑖
𝑞 the corresponding piece tree. Define𝑇

𝑅𝑖
𝑞 [𝑥] for 𝑥 ∈ 𝜕𝑅𝑖 to be the path from 𝑞 to 𝑥 in𝑇

𝑅𝑖
𝑞 ,

C𝑅𝑖𝑞 [𝑥] the corresponding chord-set, and P𝑅𝑖
𝑞 [𝑥] the corresponding piece-set.

The data structure answers the following queries

MaximalChord(𝑅𝑖 , 𝑞, 𝑥, 𝑃, 𝑃 ′): We are given 𝑅𝑖 , 𝑞, 𝑥 ∈ 𝜕𝑅𝑖 , a piece 𝑃 ∈ P𝑅𝑖
𝑞 , and possibly

another piece 𝑃 ′ ∈ P𝑅𝑖
𝑞 (which may be Null). If 𝑃 ′ is Null, return any maximal chord in

C𝑅𝑖𝑞 [𝑥] from vantage 𝑃 . If 𝑃 ′ is not Null, return the maximal chord in C𝑅𝑖𝑞 [𝑥] (which, if it
exists, is unique) that occludes 𝑃 ′ from vantage 𝑃 .

10
This is one place where we rely on the fact that each hole is bounded by a simple cycle.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:27

AdjacentPiece(𝑅𝑖 , 𝑞, 𝑒): Here 𝑒 is an edge on the boundary cycle on 𝜕𝑅𝑖 . Return the unique

piece in P𝑅𝑖
𝑞 with 𝑒 on its boundary.

11

We next describe how to compactly store Part (E) of the data structure. Our strategy is as follows.

We fix 𝑅𝑖 and 𝑞 ∈ 𝜕𝑅𝑖 and build a dynamic data structure for these operations relative to a dynamic

subset
ˆC ⊆ C𝑅𝑖𝑞 subject to the insertion and deletion of chords in𝑂 (log |𝜕𝑅𝑖 |/log log |𝜕𝑅𝑖 |) time. By

inserting/deleting 𝑂 (|𝜕𝑅𝑖 |) chords in the correct order, we can arrange that
ˆC = C𝑅𝑖𝑞 [𝑥] at some

point in time, for every 𝑥 ∈ 𝜕𝑅𝑖 . Using the generic persistence technique for RAM data structures

(see [21]) we can answer MaximalChord queries relative to C𝑅𝑖𝑞 [𝑥] in 𝑂 (log |𝜕𝑅𝑖 |) time.

We will make use of a data structure of Brodal et al. [7] specified in the following lemma.

Lemma 6.5. (Cf. Brodal et al. [7, Theorem 2]) For an edge-weighted tree with 𝑘 nodes, there exists a
data structure that occupies 𝑂 (𝑘) space and supports the following operations in 𝑂 (log𝑘/log log𝑘)
time.

• Update(𝑒,𝑤): Change the weight of an edge 𝑒 to𝑤 .
• Pathmin/Pathmax(𝑢, 𝑣): Given two nodes 𝑢 and 𝑣 , return the edge with minimum/maximum
weight on the path between 𝑢 and 𝑣 .

Lemma 6.6. Part (E) of the data structure can be stored in 𝑂 (𝑚𝑛 log𝑛/log log𝑛) total space and
answerMaximalChord queries in 𝑂 (log𝑛) time and AdjacentPiece queries in 𝑂 (1) time.

Proof. We first address MaximalChord. Let T = T𝑅𝑖
𝑞 be the piece tree. The edges of T are

in one-to-one correspondence with the chords of C = C𝑅𝑖𝑞 and if 𝑃, 𝑃 ′ ∈ P = P𝑅𝑖
𝑞 are two pieces,

the path from 𝑃 to 𝑃 ′ in T crosses exactly those chords that occlude 𝑃 ′ from vantage 𝑃 (and vice

versa). We will argue that in order to implement MaximalChord it suffices to design an efficient

dynamic data structure for the following problem; initially all edges are unmarked.

• Mark/Unmark(𝑒): Mark/unmark an edge 𝑒 ∈ 𝐸 (T).
• LastMarked(𝑃 ′, 𝑃): Return the marked edge closest to 𝑃 on the path from 𝑃 ′ to 𝑃 , or Null
if all are unmarked.

By doing a depth-first traversal of the chord tree 𝑇
𝑅𝑖
𝑞 , marking/unmarking chords as they are

encountered, the set {𝑒 ∈ 𝐸 (T) | 𝑒 is marked} will be equal to C𝑅𝑖𝑞 [𝑥] precisely when 𝑥 is first

encountered in DFS. To answer aMaximalChord(𝑅𝑖 , 𝑞, 𝑥, 𝑃, 𝑃 ′) query we interact with the state of

the data structure when themarked set is𝐶 = C𝑅𝑖𝑞 [𝑥]. If 𝑃 ′ is notNullwe return LastMarked(𝑃 ′, 𝑃).
Otherwise we pick an arbitrary (marked) chord 𝐶 ∈ C𝑅𝑖𝑞 [𝑥], get the adjacent pieces 𝑃 ′1, 𝑃 ′2 on either

side of 𝐶 , then query LastMarked(𝑃 ′
1
, 𝑃) and LastMarked(𝑃 ′

2
, 𝑃). At least one of these queries

will return a chord and that chord is maximal from vantage 𝑃 . (Note that 𝐶 must separate 𝑃 from

either 𝑃 ′
1
or 𝑃 ′

2
.)

The operations Mark, Unmark, and LastMarked are easily reducible to Update, Pathmin,
and Pathmax from Lemma 6.5 [7]. Root the tree at an arbitrary vertex and preprocess it for LCA

queries [4]. All unmarked edges carry a weight of +∞ (for Pathmin queries) and −∞ (for Pathmax
queries).Mark(𝑒) sets the weight of 𝑒 to be equal to the number of edges of the path from the root to

𝑒’s farthest endpoint from the root. Consider a LastMarked(𝑃 ′, 𝑃) query and let 𝑃 ′′ be the lowest
common ancestor of 𝑃 and 𝑃 ′. We find the edges 𝑒0 = Pathmin(𝑃 ′, 𝑃 ′′) and 𝑒1 = Pathmax(𝑃, 𝑃 ′′).
If 𝑒1 exists (𝑃 ≠ 𝑃 ′′) and is marked (weight not ±∞) then it is the correct answer. Otherwise, if 𝑒0 is

marked then it is the correct answer. If neither case holds then there are no marked edges on the

path from 𝑃 ′ to 𝑃 .

11
This is another place where we rely on the fact that every hole is bounded by a simple cycle.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:28 Charalampopoulos et al.

For fixed 𝑅𝑖 and 𝑞 ∈ 𝜕𝑅𝑖 there are 𝑂 (|𝜕𝑅𝑖 |) Mark and Unmark operations, each of which takes

𝑂 (log𝑛/log log𝑛) time. Over all choices of 𝑖, 𝑅𝑖 , and 𝑞 the total update time is𝑂 (𝑚𝑛 log𝑛/log log𝑛).
After applying generic persistence transformation for RAM data structures (see [21]) the space

is 𝑂 (𝑚𝑛 log𝑛/log log𝑛) and the time per LastMarked query is 𝑂 (log𝑛/log log𝑛 · log log𝑛) =
𝑂 (log𝑛).

Turning to AdjacentPiece(𝑅𝑖 , 𝑞, 𝑒), there are |𝜕𝑅𝑖 |2 choices of (𝑞, 𝑒). Hence all answers can be

precomputed in a lookup table occupying 𝑂 (𝑚𝑛) space. □

6.3 The SitePathIndicator Function
The SitePathIndicator function is relatively simple. We are given VD

∗
out
(𝑢𝑖 , 𝑅𝑖+1), 𝑣 ∈ 𝑅out𝑖+1, a

centroid 𝑓 ∗ ∈ 𝑅out
𝑖+1, 𝑓 being a trichromatic face on 𝑦0, 𝑦1, 𝑦2, which are, respectively, in the Voronoi

cells of 𝑠0, 𝑠1, 𝑠2 ∈ 𝜕𝑅𝑖+1, and an index 𝑗 ∈ {0, 1, 2}. We would like to know if 𝑣 is on the shortest

𝑠 𝑗 -to-𝑦 𝑗 path. Recall that 𝑡 is such that 𝑣 ∉ 𝑅𝑡 but 𝑣 ∈ 𝑅𝑡+1.
Using the lookup tables in part (D) of the data structure, we find the first and last vertices (𝑞

and 𝑥) of 𝜕𝑅𝑡 on the 𝑠 𝑗 -to-𝑦 𝑗 path. If 𝑞, 𝑥 do not exist then 𝑣 is certainly not on the 𝑠 𝑗 -to-𝑦 𝑗 path

(Line 4). Using parts (A,C,D) of the data structure, we invoke SimpleCentroidSearch to find the

last point 𝑧 of 𝜕𝑅𝑡 on the shortest path (in𝐺) from 𝑞 to 𝑣 . (See Lemma 6.3.) If 𝑧 is not on the path

from 𝑞 to 𝑥 in 𝐺 (which corresponds to it not being on the path from 𝑞 to 𝑥 in 𝑇
𝑅𝑡
𝑞 , stored in Part

(E)), then once again 𝑣 is certainly not on the 𝑠 𝑗 -to-𝑦 𝑗 path (Line 8). So we may assume that 𝑧 lies

on the 𝑞-to-𝑥 path. For the case where 𝑧 = 𝑥 , we let 𝑥 ′ be the last vertex of the shortest 𝑠 𝑗 -to-𝑦 𝑗
path that is contained in the relevant subgraph 𝑅out𝑡 ∩ 𝑅𝑡+1. In particular, there are three cases to

consider, depending on whether the destination 𝑦 𝑗 of the path is in 𝑅out𝑡 ∩ 𝑅𝑡+1, in 𝑅out𝑡+1, or in 𝑅𝑡 .
If 𝑦 𝑗 ∈ 𝑅out𝑡 ∩ 𝑅𝑡+1 we let 𝑥 ′ = 𝑦 𝑗 ; if 𝑦 𝑗 ∈ 𝑅out𝑡+1 we let 𝑥

′
be the last vertex of 𝜕𝑅𝑡+1 encountered on

the shortest 𝑠 𝑗 -to-𝑦 𝑗 path (stored in part (D)); and if 𝑦 𝑗 ∈ 𝑅𝑡 we let 𝑥 ′ = 𝑥 . Figure 10(a,b) illustrates
the first two possibilities for 𝑥 ′. Now, 𝑣 is on the 𝑠 𝑗 -to-𝑦 𝑗 path iff it is on the 𝑥-to-𝑥 ′ shortest path,
which can be answered using part (A) of the data structure (Lines 19, 21). (Figure 10(b) illustrates

one way for 𝑣 to appear on the 𝑥-to-𝑥 ′ path.) In the remaining case, 𝑧 is on the shortest 𝑞-to-𝑥 path

but is not 𝑥 , meaning that the child 𝑧′ of 𝑧 on 𝑇𝑅𝑡
𝑞 [𝑥] is well defined. If the corresponding shortest

𝑧-to-𝑧′ path lies in 𝑅out𝑡 (i.e., it is a chord

−→
𝑧𝑧′), then 𝑣 is on the shortest 𝑠 𝑗 -to-𝑦 𝑗 path iff it is on the

shortest 𝑧-to-𝑧′ path in 𝑅out𝑡 , which, once again, can be answered with part (A) of the data structure

via Lemma 6.1 (Lines 25, 27). See Figure 10(a) for an illustration of this case. Finally, if the shortest

𝑧-to-𝑧′ path is internally disjoint from 𝑅out𝑡 , then 𝑣 is clearly not on the shortest 𝑠 𝑗 -to-𝑦 𝑗 path.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:29

(a)

(b)

Fig. 10. (a) 𝑓 is in 𝑅out
𝑡+1 and 𝑥

′ is the last vertex on 𝜕𝑅𝑡+1 on the 𝑠 𝑗 -to-𝑦 𝑗 path. Since 𝑧 ≠ 𝑥 and 𝑧 ∈ 𝑇𝑅𝑡
𝑞 [𝑥] the

subpath from 𝑧 to 𝑧′ is a chord in 𝑅out𝑡 , and so we test whether 𝑣 is on the chord
−→
𝑧𝑧′. (b) 𝑓 is in 𝑅out𝑡 ∩ 𝑅𝑡+1

and 𝑥 ′ = 𝑦 𝑗 . Since 𝑧 = 𝑥 we test whether 𝑣 is on the 𝑥-to-𝑦 𝑗 path.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:30 Charalampopoulos et al.

Algorithm 5 SitePathIndicator(VD∗
out
(𝑢𝑖 , 𝑅𝑖+1), 𝑣, 𝑓 ∗, 𝑗)

Input: The dual representation VD
∗ = VD

∗
out
(𝑢𝑖 , 𝑅𝑖+1) of a Voronoi diagram, a vertex 𝑣 ∈ 𝑅out

𝑖+1, and
𝑗 ∈ {0, 1, 2}.

Output: True if 𝑣 is on 𝑠 𝑗 -to-𝑦 𝑗 shortest path, where 𝑠 𝑗 , 𝑦 𝑗 are with respect to 𝑓 ∗ in VD∗, and False
otherwise.

1: 𝑅𝑡 ← the ancestor of 𝑅𝑖 s.t. 𝑣 ∉ 𝑅𝑡 , 𝑣 ∈ 𝑅𝑡+1.
2: (𝑞, 𝑥) ← first and last 𝜕𝑅𝑡 vertices on the shortest 𝑠 𝑗 -to-𝑦 𝑗 path. ⊲ Part (D)

3: if 𝑞, 𝑥 are Null then
4: return False
5: end if
6: 𝑧 ← SimpleCentroidSearch(VD∗

out
(𝑞, 𝑅𝑡), 𝑣) ⊲ Uses parts (A,C,D); see Lemma 6.3

7: if 𝑧 is not on 𝑇𝑅𝑡
𝑞 [𝑥] then

8: return False
9: end if
10: if 𝑧 = 𝑥 then
11: if 𝑦 𝑗 is in 𝑅out𝑡 ∩ 𝑅𝑡+1 then
12: 𝑥 ′ ← 𝑦 𝑗
13: else if 𝑦 𝑗 ∉ 𝑅𝑡+1 then
14: 𝑥 ′ ← last 𝜕𝑅𝑡+1 vertex on the shortest 𝑠 𝑗 -to-𝑦 𝑗 path. ⊲ Part (D)

15: else
16: 𝑥 ′ ← 𝑥 ⊲ I.e., 𝑦 𝑗 ∉ 𝑅

out

𝑡

17: end if
18: if 𝑣 is on the shortest 𝑥-to-𝑥 ′ path then ⊲ Part (A)

19: return True
20: end if
21: return False
22: end if
23: 𝑧′ ← the child of 𝑧 on 𝑇

𝑅𝑡
𝑞 [𝑥] ⊲ Part (E)

24: if
−→
𝑧𝑧′ is a chord in C𝑅𝑡𝑞 [𝑥] and 𝑣 is on the shortest 𝑧-to-𝑧′ path in 𝑅out𝑡 then ⊲ Part (A)

25: return True
26: end if
27: return False

6.4 The ChordIndicator Function
The ChordIndicator function is given VD

∗
out
(𝑢𝑖 , 𝑅𝑖+1), 𝑣 ∈ 𝑅out𝑖+1, a centroid 𝑓

∗
, with 𝑦 𝑗 , 𝑠 𝑗 defined

as usual, and an index 𝑗 ∈ {0, 1, 2}. The goal is to report whether 𝑣 lies to right of the oriented

site-centroid-site chord
𝐶 =
−−−−−−−−−−→𝑠 𝑗𝑦 𝑗𝑦 𝑗−1𝑠 𝑗−1,

which is composed of the shortest 𝑠 𝑗 -to-𝑦 𝑗 and 𝑠 𝑗−1-to-𝑦 𝑗−1 paths, and the single edge {𝑦 𝑗 , 𝑦 𝑗−1}.
Note that 𝐶 is a simple path since the shortest 𝑠 𝑗 -to-𝑦 𝑗 and 𝑠 𝑗−1-to-𝑦 𝑗−1 paths belong to different

Voronoi cells. See Figure 6 for an illustration. It is guaranteed that 𝑣 does not lie on 𝐶 , as this case

is already handled by the SitePathIndicator function.
Figure 11 illustrates why this point location problem is so difficult. Since we know that 𝑣 ∈ 𝑅𝑡+1

and 𝑣 ∉ 𝑅𝑡 , we can narrow our attention to 𝑅out𝑡 ∩ 𝑅𝑡+1. However the projection of 𝐶 onto 𝑅out𝑡 can

cross the boundary 𝜕𝑅𝑡 an arbitrary number of times. Define C to be the set of oriented chords of

𝑅out𝑡 obtained by projecting 𝐶 onto 𝑅out𝑡 .

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:31

(a)

(b) (c) (d)

Fig. 11. (a) The projection of a site-centroid-site chord 𝐶 =
−−−−−−−−−−−→𝑠 𝑗𝑦 𝑗𝑦 𝑗−1𝑠 𝑗−1 of 𝑅out𝑖+1 onto 𝑅

out

𝑡 yields a set C
of chords of 𝑅out𝑡 , partitioned into three classes. Let 𝑞 𝑗 , 𝑥 𝑗 and 𝑞 𝑗−1, 𝑥 𝑗−1 be the first and last 𝜕𝑅𝑡 -vertices
on the 𝑠 𝑗 -to-𝑦 𝑗 and 𝑠 𝑗−1-to-𝑦 𝑗−1 paths. (b) C1: all chords in 𝑇𝑅𝑡

𝑞 𝑗
[𝑥 𝑗]. (c) C2: all chords in 𝑇𝑅𝑡

𝑞 𝑗−1 [𝑥 𝑗−1]. Their
orientation is the reverse of their counterparts in 𝐶 . (d) C3: the single chord −−−−−−−−−−−−→𝑥 𝑗𝑦 𝑗𝑦 𝑗−1𝑥 𝑗−1.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:32 Charalampopoulos et al.

Luckily C has some structure. Let (𝑞 𝑗 , 𝑥 𝑗) and (𝑞 𝑗−1, 𝑥 𝑗−1) be the first and last 𝜕𝑅𝑡 vertices on

the shortest 𝑠 𝑗 -to-𝑦 𝑗 and 𝑠 𝑗−1-to-𝑦 𝑗−1 paths, respectively. (One or both of these pairs may not exist.)

The chords of C are in one-to-one correspondence with the chords of C1 ∪ C2 ∪ C3, defined below,

but as we will see, sometimes with their orientation reversed.

C1: Define C1 = 𝐶𝑅𝑡
𝑞 𝑗
[𝑥 𝑗]. That is, C1 contains all the chords on the path from 𝑞 𝑗 to 𝑥 𝑗 , stored in

part (E) of the data structure. Moreover, the orientation of C1 agrees with the orientation of

𝐶 . The blue chords of Figure 11(a) are isolated as C1 in Figure 11(b).

C2 : Define C2 = 𝐶𝑅𝑡
𝑞 𝑗−1 [𝑥 𝑗−1]. That is, C2 contains all the chords on the path from 𝑞 𝑗−1 to 𝑥 𝑗−1. The

red chords of C in Figure 11(a) are represented by chords C2, but with reversed orientation.

Figure 11(c) depicts C2.
C3 : This set contains the oriented chord −−−−−→𝑥 𝑗𝑥 𝑗−1 (if it exists) consisting of the shortest 𝑥 𝑗 -to-𝑦 𝑗 path,

the edge {𝑦 𝑗 , 𝑦 𝑗−1}, and the reverse of the shortest 𝑥 𝑗−1-to-𝑦 𝑗−1 path. Figure 11(d) depicts C3.

The chord-set C partitions 𝑅out𝑡 into a piece-set P, with one such piece 𝑃 ∈ P containing

𝑣 . (Remember that 𝑣 is not on 𝐶 .) We can also consider the piece-sets P1,P2,P3 generated by

C1, C2, C3. Let 𝑃1 ∈ P1, 𝑃2 ∈ P2, 𝑃3 ∈ P3 be the pieces containing 𝑣 . Since, ignoring orientation,

C = C1 ∪ C2 ∪ C3, it must be that 𝑃 = 𝑃1 ∩ 𝑃2 ∩ 𝑃3. In order to determine whether 𝑣 is to the right

of 𝐶 , it suffices to find some chord 𝐶 ∈ C bounding 𝑃 and ask whether 𝑣 is to the right of 𝐶 . Note

that such a chord 𝐶 must also be on the boundary of one of 𝑃1, 𝑃2, or 𝑃3.

The high-level strategy of ChordIndicator is as follows. First, we will find some piece 𝑃 ′
1
∈ P𝑅𝑡

𝑞 𝑗

that is contained in 𝑃1 using the procedurePieceSearch described below. The chords ofC1 bounding
𝑃1 are precisely the maximal chords in C1 from vantage 𝑃 ′

1
. UsingMaximalChord (part (E)) we

will find a candidate chord 𝐶1 ∈ C1, and one edge 𝑒 on the boundary cycle of 𝜕𝑅𝑡 occluded by 𝐶1

from vantage 𝑃 ′
1
. Turning to C2, we use AdjacentPiece to find the piece 𝑃𝑒 ∈ P𝑅𝑡

𝑞 𝑗−1 adjacent to 𝑒 .

Then, using PieceSearch and MaximalChord again, we find a 𝑃 ′
2
∈ P𝑅𝑡

𝑞 𝑗−1 contained in 𝑃2 and

the maximal chord𝐶2 occluding 𝑃𝑒 from vantage 𝑃 ′
2
. Let𝐶3 be the singleton chord in C3, if any. We

determine an “eligible” chord 𝐶ℓ ∈ {𝐶1,𝐶2,𝐶3}, decide whether 𝑣 lies to the right of 𝐶ℓ , and return

this answer if ℓ ∈ {1, 3} or reverse it if ℓ = 2. Recall that chords in C2 have the opposite orientation
as their counterparts in C.
PieceSearch is presented in Section 6.4.1 and ChordIndicator in Section 6.4.2.

6.4.1 PieceSearch. Given 𝑣 and 𝑞, 𝑥 ∈ 𝜕𝑅𝑡 , we would like to locate the piece 𝑃 ∈ P𝑅𝑡
𝑞 [𝑥] that

contains 𝑣 . Note that since P𝑅𝑡
𝑞 is a refinement of P𝑅𝑡

𝑞 [𝑥], 𝑃 is the union of some pieces in P𝑅𝑡
𝑞 .

Thus, it suffices to return any 𝑃 ′ ∈ P𝑅𝑡
𝑞 such that 𝑃 ′ ⊆ 𝑃 . The procedure PieceSearch performs

this task.

The first thing it does is find the last 𝜕𝑅𝑡 vertex 𝑧 on the shortest path from 𝑞 to 𝑣 , which can

be done with a call to SimpleCentroidSearch on VD
∗
out
(𝑞, 𝑅𝑡), using Lemma 6.3. (This uses parts

(A,C,D) of the data structure.) The shortest path from 𝑧 to 𝑣 cannot cross any chord in C𝑅𝑡𝑞 [𝑥], since
they are part of a shortest path, but it can coincide with a prefix of some chord in C𝑅𝑡𝑞 [𝑥]. Thus, if
no chord of C𝑅𝑡𝑞 [𝑥] is incident to 𝑧, then we are free to return any piece containing 𝑧. (There may

be multiple options if 𝑧 is an endpoint of a chord in C𝑅𝑡𝑞 . This case is depicted in Figure 12. When

𝑧 = 𝑧0, we know that 𝑣 ∈ 𝑃5 ∪ · · · ∪ 𝑃9 and return any such piece containing 𝑧.) In general 𝑧 may be

incident to up to two chords 𝐶1,𝐶2 ∈ C𝑅𝑡𝑞 [𝑥]. (This occurs when the shortest 𝑞-to-𝑥 path touches

𝜕𝑅𝑡 at 𝑧 without leaving 𝑅
out

𝑡 .) In this case we determine which side of 𝐶1 and 𝐶2 𝑣 is on (using

Lemma 6.1) and return the appropriate piece adjacent to𝐶1 or𝐶2. This case is depicted in Figure 12

with 𝑧 = 𝑧1; the three possible answers coincide with 𝑣 ∈ {𝑣1, 𝑣2, 𝑣3}.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:33

Algorithm 6 PieceSearch(𝑅𝑡 , 𝑞, 𝑥, 𝑣)
Input: A region 𝑅𝑡 , two vertices 𝑞, 𝑥 ∈ 𝜕𝑅𝑡 , and a vertex 𝑣 not on the 𝑞-to-𝑥 shortest path in 𝐺 .

Output: Any piece 𝑃 ′ ∈ P𝑅𝑡
𝑞 that is a subpiece of the unique piece 𝑃 ∈ P𝑅𝑡

𝑞 [𝑥] containing 𝑣 .
1: 𝑧 ← SimpleCentroidSearch(VD∗

out
(𝑞, 𝑅𝑡), 𝑣) ⊲ Uses parts (A,C,D) of the data structure

2: if 𝑧 is not an endpoint of any chord in C𝑅𝑡𝑞 [𝑥] then
3: return any piece in P𝑅𝑡

𝑞 containing 𝑧.

4: end if
5: 𝐶1,𝐶2 ← two chords in C𝑅𝑡𝑞 [𝑥] adjacent to 𝑧 (𝐶2 may be Null)
6: Determine whether 𝑣 is to the left or right of 𝐶1 and 𝐶2. ⊲ Part (A); see Lemma 6.1

7: return a piece adjacent to 𝐶1 or 𝐶2 that respects the queries of Line 6.

Fig. 12. Solid chords are in C𝑅𝑡𝑞 [𝑥]. Dashed chords are in C𝑅𝑡𝑞 but not C𝑅𝑡𝑞 [𝑥]. When 𝑧 = 𝑧0, 𝑣 = 𝑣0, the

piece in P𝑅𝑡𝑞 [𝑥] containing 𝑣 is the union of 𝑃5–𝑃9. PieceSearch reports any piece containing 𝑧0. When
𝑧 = 𝑧1, 𝑣 ∈ {𝑣1, 𝑣2, 𝑣3}, 𝑧 is incident to two chords 𝐶1,𝐶2. PieceSearch decides which side of 𝐶1,𝐶2 𝑣 is on
(see Lemma 6.1), and returns the appropriate piece adjacent to 𝐶1 or 𝐶2.

We remark that we could have defined PieceSearch to not take 𝑥 as an argument, and just

return a piece 𝑃 ′ ∈ P𝑅𝑡
𝑞 containing 𝑣 , which is, by definition, a subpiece of the piece 𝑃 ∈ P𝑅𝑡

𝑞 [𝑥]
containing 𝑣 . This would entail modifying Lines 5–6 to do a binary search on all the chords in C𝑅𝑡𝑞

incident to 𝑧.

6.4.2 ChordIndicator. Let us walk through the ChordIndicator function. If𝐶 =
−−−−−−−−−−→𝑠 𝑗𝑦 𝑗𝑦 𝑗−1𝑠 𝑗−1 does

not touch the interior of 𝑅out𝑡 then the left-right relationship between 𝐶 and 𝑣 ∉ 𝑅𝑡 is known, and

stored in part (D) of the data structure. If this is the case the answer is returned immediately, at

Line 3. A relatively simple case is when C1 and C2 are empty, and C = C3 consists of just one chord
𝐶3 =

−−−−−−−−−−−→𝑥 𝑗𝑦 𝑗𝑦 𝑗−1𝑥 𝑗−1. We apply Lemma 6.2 to determine whether 𝑣 is to the right or left of 𝐶3 and

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:34 Charalampopoulos et al.

return this answer (Line 8). Thus, without loss of generality we can assume that C1 ≠ ∅ and C2
may or may not be empty.

Recall that 𝑃1 is 𝑣 ’s piece in P𝑅𝑡
𝑞 𝑗
[𝑥 𝑗]. Using PieceSearch we find a piece 𝑃 ′

1
⊆ 𝑃1 in the more

refined partition P𝑅𝑡
𝑞 𝑗

and find aMaximalChord𝐶1 ∈ C1 from vantage 𝑃 ′
1
, and hence from vantage

𝑣 as well. We regard 𝜕𝑅𝑡 as circularly ordered according to a clockwise walk around the hole on 𝜕𝑅𝑡
in 𝑅out𝑡 . The chord 𝐶1 occludes an interval 𝐼1 of 𝜕𝑅𝑡 from vantage 𝑣 . If 𝐶1 is not one of the chords
bounding 𝑃 , then 𝐶3 or some 𝐶2 ∈ C2 must occlude a superset 𝐼2 of 𝐼1, so we will attempt to find

such a 𝐶2, as follows.

Let 𝑒 be the first edge on the boundary cycle occluded by 𝐶1, i.e., 𝑒 joins the first two elements

of 𝐼1. Using AdjacentPiece we find the unique piece 𝑃𝑒 ∈ P𝑅𝑡
𝑞 𝑗−1 with 𝑒 on its boundary. Using

PieceSearch again we find 𝑃 ′
2
∈ P𝑅𝑡

𝑞 𝑗−1 contained in 𝑃2, and using MaximalChord again, we find

the maximal chord 𝐶2 ∈ C2 that occludes 𝑃𝑒 from vantage 𝑃 ′
2
, and hence from vantage 𝑣 as well.

Observe that since all chords in C2 are vertex-disjoint from𝐶1, if𝐶2 ≠ Null then𝐶2 must occlude a

strictly larger interval 𝐼2 ⊃ 𝐼1 of 𝜕𝑅𝑡 . (If 𝐶2 is Null then 𝐼2 = ∅.) It may be that 𝐶1 and 𝐶2 are both

not on the boundary of 𝑃 , but the only way that could occur is if 𝐶3 ∈ C3 exists and occludes a

superset of 𝐼1 and of 𝐼2 on the boundary 𝜕𝑅𝑡 . We check whether 𝑣 lies to the right or left of𝐶3 using

Lemma 6.2 and let 𝐼3 be the interval of 𝜕𝑅𝑡 occluded by𝐶3 from vantage 𝑣 . If 𝐼3 does not cover 𝑒 , then

we cannot conclude that 𝐶3 is superior than 𝐶1 and 𝐶2. Thus, we find the chord 𝐶ℓ ∈ {𝐶1,𝐶2,𝐶3}
that covers 𝑒 and maximizes |𝐼ℓ |. 𝐶ℓ must be on the boundary of 𝑃 , so the left-right relationship

between 𝑣 and 𝐶 is exactly the same as the left-right relationship between 𝑣 and 𝐶ℓ , if ℓ ∈ {1, 3},
and the reverse of this relationship if ℓ = 2 since chords in C2 have the opposite orientation as their

subpath counterparts in 𝐶 . Figure 13 illustrates how ℓ could take on all three values.

(a) (b) (c)

Fig. 13. The intervals 𝐼1, 𝐼2, 𝐼3 are represented as pink circular arcs. The edge 𝑒 is the first edge of 𝐼1 in a
clockwise walk around the hole bounded by 𝜕𝑅𝑡 in 𝑅out𝑡 . (Note that in this drawing the hole on 𝜕𝑅𝑡 is the
infinite face. Thus, a clockwise walk around 𝜕𝑅𝑡 looks like a counter-clockwise walk in the plane.) In (a) 𝐶2
exists and𝐶3 is eligible since 𝐼3 ⊃ 𝐼2 ⊃ 𝐼1. In (b)𝐶2 exists, but𝐶3 occludes an interval 𝐼3 that does not contain
𝑒 , so𝐶2 is an eligible chord. In (c)𝐶2 is Null, and𝐶3 does not occlude 𝑒 from 𝑣 , so𝐶1 is the only eligible chord.
(In the figure 𝐼3 ⊂ 𝐼1 but it could also be as in (b), with 𝐼3 disjoint from 𝐼1.)

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:35

Algorithm 7 ChordIndicator(VD∗
out
(𝑢𝑖 , 𝑅𝑖+1), 𝑣, 𝑓 ∗, 𝑗)

Input: The dual representation VD
∗
out

= VD
∗
out
(𝑢𝑖 , 𝑅𝑖+1) of a Voronoi diagram, a centroid 𝑓 ∗ in

VD
∗
out

with face 𝑓 on vertices 𝑦0, 𝑦1, 𝑦2, which are in the Voronoi cells of 𝑠0, 𝑠1, 𝑠2, an index 𝑗 ∈
{0, 1, 2}, and a vertex 𝑣 ∈ 𝑅out

𝑖+1 that does not lie on the site-centroid-site chord 𝐶 =
−−−−−−−−−−→𝑠 𝑗𝑦 𝑗𝑦 𝑗−1𝑠 𝑗−1.

Output: True if 𝑣 lies to the right of 𝐶 , and False otherwise.
1: 𝑅𝑡 ← the ancestor of 𝑅𝑖 s.t. 𝑣 ∉ 𝑅𝑡 , 𝑣 ∈ 𝑅𝑡+1. C is the projection of 𝐶 onto 𝑅out𝑡 .

2: if the left/right relationship between 𝑅out𝑡 and 𝐶 =
−−−−−−−−−−→𝑠 𝑗𝑦 𝑗𝑦 𝑗−1𝑠 𝑗−1 is known then

3: return stored True/False answer. ⊲ Part (D)

4: end if ⊲ (It follows that 𝐶 crosses 𝜕𝑅𝑡 and that C ≠ ∅)
5: (𝑞 𝑗 , 𝑥 𝑗) ← first and last 𝜕𝑅𝑡 -vertices on shortest 𝑠 𝑗 -to-𝑦 𝑗 path. ⊲ Part (D)

6: (𝑞 𝑗−1, 𝑥 𝑗−1) ← first and last 𝜕𝑅𝑡 -vertices on shortest 𝑠 𝑗−1-to-𝑦 𝑗−1 path. ⊲ Part (D)

7: if C1 = C2 = ∅ then
8: return True if 𝑣 is to the right of the C3-chord −−−−−−−−−−−→𝑥 𝑗𝑦 𝑗𝑦 𝑗−1𝑥 𝑗−1, or False otherwise. ⊲ Parts

(A,D)

9: end if ⊲ W.l.o.g., continue under the assumption that C1 ≠ ∅.
10: 𝑃 ′

1
← PieceSearch(𝑅𝑡 , 𝑞 𝑗 , 𝑥 𝑗 , 𝑣) ⊲ Parts (A,C,D)

11: 𝐶1 ← MaximalChord(𝑅𝑡 , 𝑞 𝑗 , 𝑥 𝑗 , 𝑃 ′1,⊥) ⊲ Part (E)

12: 𝐼1 ← the clockwise interval of hole 𝜕𝑅𝑡 occluded by 𝐶1 from vantage 𝑣 .

13: 𝑒 ← edge joining first two elements of 𝐼1.

14: 𝑃𝑒 ← AdjacentPiece(𝑅𝑡 , 𝑞 𝑗−1, 𝑒) ⊲ Part (E)

15: 𝑃 ′
2
← PieceSearch(𝑅𝑡 , 𝑞 𝑗−1, 𝑥 𝑗−1, 𝑣) ⊲ Parts (A,C,D)

16: 𝐶2 ← MaximalChord(𝑅𝑡 , 𝑞 𝑗−1, 𝑥 𝑗−1, 𝑃 ′2, 𝑃𝑒) ⊲ Part (E); may return Null
17: 𝐼2 ← the clockwise interval of hole 𝜕𝑅𝑡 occluded by 𝐶2 from vantage 𝑣 . ⊲ ∅ if 𝐶2 = Null
18: 𝐶3 ← single chord in C3, if any. ⊲ May be Null
19: 𝐼3 ← the clockwise interval of hole 𝜕𝑅𝑡 occluded by 𝐶3 from vantage 𝑣 . ⊲ Parts (A,D)

20: ℓ ← index such that 𝐼ℓ covers 𝑒 , and |𝐼ℓ | is maximum.

21: if 𝑣 is to the right of 𝐶ℓ and ℓ ∈ {1, 3} or 𝑣 is to the left of 𝐶ℓ and ℓ = 2 then
22: return True
23: end if
24: return False

7 ANALYSIS
This section constitutes a proof of the claims of Theorem 1.1 concerning space complexity and

query time. See Section 8 for an efficient construction and its analysis.

The cost of PieceSearch is dominated by the call to SimpleCentroidSearch in Line 1, which,

by Lemma 6.3, takes 𝑂 (𝜅 log𝑛 log log𝑛) time. SitePathIndicator is also dominated by one call to

SimpleCentroidSearch. (Its other operations are handled by theMSSP structure (part (A)) and

various 𝑂 (1)-time tree operations on 𝑇
𝑅𝑖
𝑞 and the ®𝑟 -division such as lowest common ancestors and

level ancestors [4, 5, 35, 37].)d It also takes 𝑂 (𝜅 log𝑛 log log𝑛) time. The calls toMaximalChord
and AdjacentPiece in ChordIndicator take 𝑂 (log𝑛) time by Lemma 6.6, and testing which

side of a chord 𝑣 lies on takes 𝑂 (𝜅 log log𝑛) time by Lemmas 6.1 and 6.2. The bottleneck in

ChordIndicator is still PieceSearch; overall it takes 𝑂 (𝜅 log𝑛 log log𝑛) time.

An initial call to CentroidSearch (Line 4 of Dist) generates at most log𝑛 recursive calls

to CentroidSearch in total, culminating in the last recursive call making 1 or 2 calls to Dist
with the “𝑖” parameter incremented. Excluding the cost of recursive calls to Dist, the cost of

CentroidSearch is dominated by calls to SitePathIndicator and ChordIndicator, i.e., an initial

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:36 Charalampopoulos et al.

call to CentroidSearch takes log𝑛 · 𝑂 (𝜅 log𝑛 log log𝑛) = 𝑂 (𝜅 log2 𝑛 log log𝑛) time. Let 𝑇 (𝑖) be
the cost of a call to Dist(𝑢𝑖 , 𝑣, 𝑅𝑖). We have

𝑇 (𝑚 − 1) = 𝑂 (𝜅 log log𝑛) Dist returns at Line 2 with one MSSP query

𝑇 (𝑖) = 2𝑇 (𝑖 + 1) +𝑂 (𝜅 log2 𝑛 log log𝑛)

It follows that the time to answer a distance query is 𝑇 (0) = 𝑂 (2𝑚 · 𝜅 log2 𝑛 log log𝑛).

The space complexity of each part of the data structure is as follows. (A) is 𝑂 (𝜅𝑚𝑛1+1/𝑚+1/𝜅)
by Lemma 2.1 and the fact that 𝑟𝑖+1/𝑟𝑖 = 𝑛1/𝑚 . (B) is 𝑂 (𝑚𝑛1+1/(2𝑚)) since

√︁
𝑟𝑖+1/𝑟𝑖 = 𝑛1/(2𝑚) . (C)

is 𝑂 (𝑚𝑛) since ∑
𝑖 𝑛/𝑟𝑖 · (

√
𝑟𝑖)2 = 𝑂 (𝑚𝑛). (D) is 𝑂 (𝑚) times the space cost of (B) and (C), namely

𝑂 (𝑚2𝑛1+1/(2𝑚)), and (E) is 𝑂 (𝑚𝑛 log𝑛/log log𝑛) by Lemma 6.6. For the choices of𝑚,𝜅 considered

below, the bottleneck is (A).

We now explain how𝑚,𝜅 can be selected to achieve the extreme space and query complexities

claimed in Theorem 1.1. To optimize for query time, pick 𝜅 =𝑚 to be any function of 𝑛 that is 𝜔 (1)
and 𝑜 (log log𝑛). Then the query time is

𝑂 (2𝑚𝜅 log2 𝑛 log log𝑛) = log
2+𝑜 (1) 𝑛

and the space is

𝑂 (𝑚𝜅𝑛1+1/𝑚+1/𝜅) = 𝑛1+𝑜 (1) .
To optimize for space, choose𝜅 = log𝑛 and𝑚 to be a function that is𝜔 (log𝑛/log log𝑛) and 𝑜 (log𝑛).
Then the space is

𝑂

(
𝑚𝜅𝑛1+1/𝑚+1/𝜅

)
= 𝑜

(
𝑛1+1/𝑚 log

2 𝑛

)
= 𝑛 · 2𝑜 (log log𝑛) · log2 𝑛 = 𝑛 log2+𝑜 (1) 𝑛,

and the query time

𝑂 (2𝑚𝜅 log2 𝑛 log log𝑛) = 2
𝑜 (log𝑛)

log
3 𝑛 log log𝑛 = 𝑛𝑜 (1) .

Note that once 𝜅 = Ω(log𝑛) it is best to switch to the pointer-based MSSP implementation

(see Lemma 2.1 and [25]), which saves a log log𝑛-factor in the query time.

7.1 Speeding Up theQuery Time
Considering functions that are 𝜔 (1) and 𝑜 (log log𝑛) is of purely theoretical nature, so in practice

𝑚 and 𝜅 will just be set as constants. In this section we illustrate how the query time’s dependence

on𝑚 can be improved from 2
𝑚
to about 2

𝑚/4
.

Observe that the space of (B) is asymptotically smaller than the space of (A). Replace (B) with (B’)

(B’) (Voronoi Diagrams) Fix 𝑖 , a region 𝑅𝑖 ∈ R𝑖 with ancestors 𝑅𝑖+1 ∈ R𝑖+1 and 𝑅𝑖+4 ∈ R𝑖+4. For
each 𝑞 ∈ 𝜕𝑅𝑖 store

VD
∗
out
(𝑞, 𝑅𝑖+1) = VD

∗ [𝑅out𝑖+1, 𝜕𝑅𝑖+1, 𝜔]
VD
∗
farout
(𝑞, 𝑅𝑖+4) = VD

∗ [𝑅out𝑖+4, 𝜕𝑅𝑖+4, 𝜔] only if 𝑖 < 𝑚 − 4

with 𝜔 (𝑠) = dist𝐺 (𝑞, 𝑠) in both cases. Over all regions 𝑅𝑖 , the space for storing all VD
∗
out

s is

𝑂̃ (𝑛1+1/(2𝑚)) since
√︁
𝑟𝑖+1/𝑟𝑖 = 𝑛1/(2𝑚) and the space for VD∗

farout
s is 𝑂̃ (𝑛1+2/𝑚) since

√︁
𝑟𝑖+4/𝑟𝑖 =

𝑛2/𝑚 .

Now the space for (A) is 𝑂̃ (𝑛1+1/𝑚+1/𝜅) = 𝑂̃ (𝑛1+2/𝑚) is balanced with (B’) when𝑚 = 𝑘 . In theDist
function we now consider three possibilities. If 𝑣 ∈ 𝑅𝑖+1 we use part (A) to solve the problemwithout

recursion. If 𝑣 ∉ 𝑅𝑖+1 but 𝑣 ∈ 𝑅𝑖+4 we proceed as usual, calling CentroidSearch(VD∗out (𝑢𝑖 , 𝑅𝑖+1), 𝑣),

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:37

and if 𝑣 ∉ 𝑅𝑖+4 we call CentroidSearch(VD∗
farout
(𝑢𝑖 , 𝑅𝑖+4), 𝑣). Observe that the depth of the Dist-

recursion is now at most 𝑡/4+𝑂 (1) < 𝑚/4+𝑂 (1), giving us a query time of𝑂 (𝑚2
𝑚/4

log
2 𝑛 log log𝑛)

with space 𝑂̃ (𝑛1+2/𝑚).

8 CONSTRUCTION
In this section, we show how to construct our oracle in 𝑛3/2+𝑜 (1) time. We use dense distance

graphs. The dense distance graph of a region 𝑅, denoted DDG[𝑅], is a complete directed graph on

the vertices of 𝜕𝑅, in which the length of edge (𝑢, 𝑣) is dist𝑅 (𝑢, 𝑣). We say that this kind of DDG

is internal and, similarly, define the external DDG of a region 𝑅, denoted by DDG[𝑅out], to be a

complete directed graph on 𝜕𝑅, in which the length of edge (𝑢, 𝑣) is dist𝑅out (𝑢, 𝑣).
The FR-Dijkstra algorithm [28] is an efficient implementation of Dijkstra’s algorithm [23] on

DDGs. In particular, it simulates the behavior of the heap in Dijkstra’s algorithm without explicitly

scanning every edge in the DDG. In fact, the FR-Dijkstra algorithm can run on a union of DDGs

[28]. Moreover, it is shown in [6] that it is also compatible with a traditional implementation of

Dijkstra’s algorithm, in the following sense: Suppose we have a graph 𝐻 that consists of a subgraph

of 𝐺 on 𝑛0 vertices, and 𝑘 DDGs on 𝑛1, 𝑛2, . . . , 𝑛𝑘 vertices, respectively. The FR-Dijkstra algorithm

can be implemented on 𝐻 in 𝑂̃ (𝑁) time, where 𝑁 =
∑𝑘

𝑖=0 𝑛𝑖 [28, 40, 55].

Before the construction of DDGs and our oracle, we first prepare Klein’s MSSP structures (part

(F) below). Note thatMSSP structures in part (F) are only used in the construction of DDGs and

part (D). They are not stored in our oracle and are unrelated to the MSSP structures from part (A).

(F) (MoreMSSP Structures) For each 𝑖 ∈ [0,𝑚 − 1], each 𝑅𝑖 ∈ R𝑖 with parent 𝑅𝑖+1 ∈ R𝑖+1, we
build twoMSSP structures for 𝑅out𝑖 ∩ 𝑅𝑖+1 with sources on 𝜕𝑅𝑖 and 𝜕𝑅𝑖+1, respectively, and an

MSSP structure for 𝑅𝑖 with sources on 𝜕𝑅𝑖 .

All theseMSSP structures are constructed using Klein’sMSSP algorithm [45] or the one in

Appendix A.2 (with 𝜅 = log𝑛) in 𝑂̃ (∑𝑖
𝑛
𝑟𝑖
𝑟𝑖+1) = 𝑂̃ (𝑚𝑛1+1/𝑚) time.

We then compute, for each region 𝑅𝑖 in the ®𝑟 -division, the internal DDG, the external DDG, and
the DDG of 𝑅out𝑖 ∩ 𝑅𝑖+1, denoted DDG[𝑅out𝑖 ∩ 𝑅𝑖+1], defined as the complete graph with vertices

𝜕𝑅𝑖 ∪ 𝜕𝑅𝑖+1 and edge weights the distances in 𝑅out𝑖 ∩ 𝑅𝑖+1. The internal DDG and DDG[𝑅out𝑖 ∩ 𝑅𝑖+1]
for each region 𝑅𝑖 can be computed using theMSSP structures in part (F) in 𝑂̃ (𝑟𝑖) and 𝑂̃ (𝑟𝑖+1) time

respectively, thus in 𝑂̃ (∑𝑖
𝑛
𝑟𝑖
(𝑟𝑖 +𝑟𝑖+1)) = 𝑂̃ (𝑚𝑛1+1/𝑚) time over all regions. To compute the external

DDGs, we consider a top-down process on the ®𝑟 -division. The external DDG for 𝑅𝑖 can be computed

by running the FR-Dijkstra algorithm on the union of DDG[𝑅out
𝑖+1] and DDG[𝑅out𝑖 ∩ 𝑅𝑖+1] sourced

from each vertex in 𝜕𝑅𝑖 . The number of vertices in this union is𝑂 (√𝑟𝑖+1), so computing DDG[𝑅out𝑖]
takes 𝑂̃ (√𝑟𝑖𝑟𝑖+1) time, and the construction time over all external DDGs is 𝑂̃ (∑𝑖

𝑛
𝑟𝑖

√
𝑟𝑖𝑟𝑖+1) =

𝑂̃ (𝑚𝑛1+1/(2𝑚)). The total construction time for all DDGs is 𝑂̃ (𝑚𝑛1+1/𝑚). (See [41] for a recent

efficient algorithm for computing external DDGs.)

With dense distance graphs, all components in the oracle can be constructed as follows.

(A) MSSP Structures
Recall that our MSSP structure for 𝑅out𝑖 with sites 𝜕𝑅𝑖 is obtained by contracting subpaths in

𝑅out
𝑖+1 of the SSSP trees into single (shortcut) edges. In order to build the MSSP structure using

dynamic trees, it suffices to compute the contracted shortest path tree for every source on

𝜕𝑅𝑖 and then compare the differences between the trees of two adjacent sources on 𝜕𝑅𝑖 .

For a single source on 𝜕𝑅𝑖 , the contracted shortest path tree can be computed with the FR-

Dijkstra algorithm on the union of subgraph 𝑅out𝑖 ∩𝑅𝑖+1 and DDG[𝑅out𝑖+1] in time 𝑂̃ (𝑟𝑖+1). Thus,
the time for constructing and comparing the shortest path trees is 𝑂̃ (𝑟𝑖+1

√
𝑟𝑖). After that,

anMSSP structure for 𝑅out𝑖 can be built in time 𝑂̃ ((𝑟𝑖+1 +
√
𝑟𝑖𝑟𝑖+1)𝜅𝑛1/𝜅) (See item (A) in the

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:38 Charalampopoulos et al.

beginning of Section 5). The total time to construct all MSSP structures is 𝑂̃ (∑𝑖
𝑛
𝑟𝑖
(𝑟𝑖+1
√
𝑟𝑖 +

𝑟𝑖+1𝜅𝑛1/𝜅)) = 𝑂̃ (𝑛3/2+1/𝑚𝑚 + 𝑛1+1/𝜅+1/𝑚𝑚𝜅).

Remark 1. Notice that in our MSSP structures for 𝑅out𝑖 , a contracted subpath should be

internally disjoint from 𝜕𝑅𝑖+1. However, the underlying shortest paths represented by edges

in DDG[𝑅out
𝑖+1] may not satisfy this condition. To fix this problem, we subtract a small value

from all edge weights in DDGs, so that shortest paths are not affected. With this perturbation,

the path using the largest number of DDG edges will be preferred. In such a path, each edge

of the DDG corresponds to a path that is internally disjoint from 𝜕𝑅𝑖+1. This mechanism will

also be used below.

Efficient construction of Voronoi diagrams. Explicitly computing the primal Voronoi diagram can

be too expensive. We next show an efficient algorithm to compute the dual representation of a

Voronoi diagram that we believe is of independent interest (see [16] for an application of this

algorithm in a dynamic setting). Let us present the high-level idea of our algorithm. For conceptual

simplicity, let us think of constructing VD
∗ [𝑅, 𝜕𝑅,𝜔] for a region 𝑅 in the complete recursive binary

decomposition tree of 𝐺 , described in Section 2. Let P consist of the two children of 𝑅 in the

recursive decomposition of𝐺 . Let 𝑢 be a dummy vertex connected to 𝜕𝑅 with auxiliary edges (𝑢, 𝑠)
of length 𝜔 (𝑠) for each 𝑠 ∈ 𝜕𝑅. We will run FR-Dijkstra from the dummy vertex 𝑢 on the union of

these auxiliary edges and DDG[𝑃] for 𝑃 ∈ P. We will show that we can then decide whether each

𝑃 ∈ P contains a trichromatic face in 𝑂 (|𝜕𝑃 |) time by looking at the restriction of the computed

shortest paths tree to DDG[𝑃]. We will isolate the trichromatic faces by iteratively replacing any

piece containing such a face with its two sub-pieces and refining the shortest path tree accordingly.

Theorem 8.1. Suppose that we are given a complete recursive decomposition of a planar graph 𝐺
of size 𝑛. After an 𝑂̃ (𝑛)-time preprocessing, for any region 𝑅 of the decomposition, we can construct
VD
∗ [𝐻, 𝜕𝑅,𝜔] for𝐻 ∈ {𝑅, 𝑅out} and arbitrary additive weights𝜔 : 𝜕𝑅 → R≥0 in time 𝑂̃ (

√︁
|𝐻 | · |𝜕𝑅 |).

Proof. Our preprocessing of each region 𝑃 in the recursive decomposition consists of computing

DDG[𝑃] in 𝑂 ((|𝑃 | + |𝜕𝑃 |2) log |𝑃 |) time viaMSSP. This requires 𝑂̃ (𝑛) time in total.

For clarity, we assume that the additive weights are such that there are no empty Voronoi cells

and only waive this assumption at the end of the proof.

Let 𝐾 be the star with center𝑢 and leaves 𝜕𝑅, such that the weight of edge (𝑢, 𝑠) is𝜔 (𝑠). Consider
a set P of regions of the recursive decomposition that cover 𝐻 , i.e., each edge in 𝐻 belongs to at

least one region in P and no edge in 𝐺 \ 𝐻 belongs to any region of P. Let 𝑇 be a shortest path

tree rooted at 𝑢 in the union of 𝐾 and the DDGs of all pieces in P. We shall next prove that, for

each piece 𝑃 ∈ P, we can infer whether 𝑃 contains a trichromatic face or not by inspecting the

restriction of 𝑇 to DDG[𝑃].
Our assumption on the additive weights guarantees that each vertex of 𝜕𝑅 is a child of 𝑢 in𝑇 . We

label each vertex 𝑣 of𝑇 by its unique ancestor in𝑇 that belongs to 𝜕𝑅. Note that the label of a vertex

𝑣 corresponds to the Voronoi cell containing 𝑣 in VD[𝐻, 𝜕𝑅,𝜔]. For a piece 𝑃 ∈ P, consider the
restriction of 𝑇 to DDG[𝑃]. We use a representation of size 𝑂 (|𝜕𝑃 |) of the edges of 𝑇 embedded as

curves in 𝑃 , such that each edge of𝑇 is homologous to its underlying shortest path in 𝑃 . See [47, 53]

for details on such a representation. We make incisions in the embedding of 𝑃 along the edges

of 𝑇 (the endpoints of edges of 𝑇 are duplicated in this process). Let Q be the set of connected

components of 𝑃 after all incisions are made.

Claim 8.2. 𝑃 contains a trichromatic face if and only if some connected component 𝐶 in Q contains
boundary vertices of 𝑃 with at least three distinct labels.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:39

Fig. 14. Illustration for the proof of the claim in the case where𝐻 = 𝑅out. Some pieces in a graph𝐺 are shown.
Region 𝑅 is shown in bold. Region 𝑃 (bold boundary, horizontal stripes) lies outside 𝑅. The shortest path tree
𝑇 is shown in blue, the connected component 𝐶 in yellow, and the cycle 𝐷 in gray. Vertices 𝑥 and 𝑦 have the
same label 𝑠 . The vertices 𝑣, 𝑧 between 𝑥 and 𝑦 (on the cyclic walk 𝐹 along the infinite face of 𝐶) must also be
labeled 𝑠 .

Intuitively, for each connected component 𝐶 in Q, each label appears as the label of boundary

vertices along at most a single sequence of consecutive boundary vertices along the boundary of 𝐶 .

Then, since 𝐶 is triangulated, apart perhaps from its infinite face, Sperner’s lemma [62] directly

implies that 𝐶 contains a trichromatic face if and only if 𝐶 has vertices with at least three distinct

labels in its infinite face. Let us remark that the proof of Claim 8.2 does not rely on the single-hole

assumption.

Proof of Claim 8.2. Let 𝐶 be a connected component in Q. First, note that each of the vertices

of 𝐶 belongs to the Voronoi cell of one of the sites that label the vertices in 𝐶 ∩ 𝜕𝑃 . Hence, if each
𝐶 ∈ Q contains boundary vertices of 𝑃 with at most two distinct labels, 𝑃 cannot contain any

trichromatic faces.

It thus suffices to show that, if some 𝐶 ∈ Q contains boundary vertices of 𝑃 with at least three

distinct labels, then 𝐶 (and 𝑃) contains a trichromatic face. Let us consider such a component 𝐶 .

Note that the vertices of 𝜕𝑅 either do not belong to 𝐶 or they are incident to a single face 𝑓 of 𝐶 . In

the former case, let 𝑓 be the face of 𝐶 such that 𝜕𝑅 is embedded in 𝑓 . We think of 𝑓 as the infinite

face of 𝐶 . Note that, because any path from 𝜕𝑅 to any vertex of 𝐶 must intersect 𝑓 , the set of labels

of the vertices of 𝑓 is identical to the set of labels of all of 𝐶 .

We first claim that the vertices of 𝑓 that have the same label are consecutive in the cyclic order

of 𝑓 . To see this, consider any two distinct vertices 𝑥,𝑦 of 𝑓 that have the same label 𝑠 . If the unique

𝑥-to-𝑦 path in𝑇 is a subpath of the boundary of 𝑓 , then this is clearly the case. Otherwise, consider

the (not necessarily simple) cycle 𝐷 (in 𝐻) formed by the unique 𝑥-to-𝑦 path in 𝑇 , and the 𝑥-to-𝑦

path 𝐹 along the boundary of 𝑓 , such that 𝜕𝑅 and 𝐶 are on the same side of 𝐷 . See Figure 14. By

choice of 𝐷 , the only vertex of 𝜕𝑅 that can be enclosed by 𝐷 is 𝑠 . Suppose, towards a contradiction,

that some vertex 𝑣 of 𝐹 has label 𝑠′ ≠ 𝑠 . Since 𝐷 does not enclose 𝑠′, the 𝑠′-to-𝑣 path in 𝑇 starts

outside 𝐷 . Further, it cannot cross the 𝑥-to-𝑦 path in 𝑇 , all of whose vertices have the label 𝑠 . Thus,

the 𝑠′-to-𝑣 path in 𝑇 must intersect 𝐶 , and use an edge whose underlying shortest path is disjoint

from 𝑓 . But then 𝐶 should have been further dissected when the incisions along 𝑇 were performed,

a contradiction.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:40 Charalampopoulos et al.

The argument above established that the vertices of 𝑓 that have the same label are consecutive

in the cyclic order of 𝑓 . Let us now recall Sperner’s lemma.

Lemma 8.3 (Sperner’s lemma). Consider a planar graph 𝐽 , such that each face is a triangle, apart
perhaps from the infinite face 𝑔. Further, consider a vertex-coloring of 𝐽 with colors {1, 2, 3} that
satisfies the following condition: there exist three vertices 𝑣1, 𝑣2, 𝑣3 in 𝑔, colored 1, 2, 3, respectively, such
that, for all 𝑗 ∈ {1, 2, 3}, the vertices on the 𝑣 𝑗 -to-𝑣 𝑗−1 path along 𝑔 that does not contain 𝑣 𝑗−2 have a
color in { 𝑗, 𝑗 − 1}—indices here are modulo 3. Then, 𝐽 contains a trichromatic face.

Suppose that we have exactly three labels for the vertices of 𝑓 . Since every face of 𝐶 other than

𝑓 is a triangle, and we can arbitrarily pick the 𝑣𝑖 ’s as the vertices of each label form a contiguous

interval, a direct application of Sperner’s lemma implies that there is a trichromatic face. If we

have 𝑘 > 3 colors, we can group 𝑘 − 2 of them that appear consecutively in 𝑓 together, and apply

Sperner’s lemma to the new instance. This concludes the proof of Claim 8.2. □

If𝐻 = 𝑅out, we set P to be the set of all siblings of pieces in the complete recursive decomposition

tree that contain 𝑅. Else, 𝐻 = 𝑅 and we set P = {𝑅}.
We repeat the following process (𝑂 (log𝑛) times) until we locate all 𝑂 (|𝜕𝑅 |) trichromatic faces.

Each iteration consists of two steps. In the first step we compute the shortest path tree 𝑇 rooted

at 𝑢 in the union of 𝐾 and the DDGs of all pieces in P using FR-Dijkstra. In the second step we

refine the set P as follows. For each piece 𝑃 , using Claim 8.2, we decide in 𝑂 (|𝜕𝑃 |) time whether it

contains any trichromatic face. If 𝑃 does not contain a trichromatic face we do nothing. If it does,

we remove 𝑃 from P and we insert to P the two children of 𝑃 , unless 𝑃 is a leaf in the recursive

decomposition, in which case we insert to P the individual edges of 𝑃 .

The tree structure of VD[𝐻, 𝜕𝑅,𝜔] is captured by the structure of the shortest path tree in the

DDGs of all the pieces at the end of this process. The total time to locate all the trichromatic faces

is proportional, up to polylogarithmic factors, to the total number of vertices in all of the DDGs

involved in all these computations, which is bounded as follows.

Let 𝑅𝐻 be the smallest piece in the complete recursive decomposition of 𝐺 that contains 𝐻 (if

𝐻 = 𝑅 then 𝑅𝐻 = 𝑅, and if 𝐻 = 𝑅out then 𝑅𝐻 = 𝐺). Note that |𝑅𝐻 | = 𝑂 (|𝐻 |). For the remainder

of this proof, we use the term decomposition tree to refer to the subtree of the complete recursive

decomposition tree rooted at 𝑅𝐻 . Each DDG involved in the computation is either the DDG of

a piece 𝑃 in the decomposition tree that contains a trichromatic face, or the DDG of the sibling

of such a piece 𝑃 . There are 𝑂 (|𝜕𝑅 |) trichromatic faces, and each contributes at most two DDGs

at each level of the decomposition tree. It is well known (cf. [32, Lemma 3.1]) both that the sizes

of pieces and the number of boundary vertices of pieces decrease geometrically as one descends

down the decomposition tree. Hence, a naïve bound on the total number of boundary vertices

(equivalently, DDG vertices) in all those pieces is 𝑂̃ (
√︁
|𝐻 | · |𝜕𝑅 |). However, this bound is not tight

since it double counts the contribution of pieces containing several trichromatic faces. We follow

the calculation in [17, Lemma 3.3] to avoid this double counting. Let 𝑟 = |𝐻 |/|𝜕𝑅 |. Consider an
𝑟 -division of 𝑅𝐻 in the decomposition tree. We bound separately the contribution of (a) ancestors

of pieces in the 𝑟 -division, and (𝑏) descendants of pieces in the 𝑟 -division.

For part (a), it is well known that the total number of vertices of all DDGs of all of the pieces

in an 𝑟 -division is 𝑂 (|𝐻 |/
√
𝑟) = 𝑂 (

√︁
|𝐻 | · |𝜕𝑅 |), and that this is also a bound on the total number

of vertices in all DDGs of all the ancestors of pieces of the 𝑟 -division in the decomposition tree.

Hence, the contribution of part (a) is 𝑂 (
√︁
|𝐻 | · |𝜕𝑅 |).

For part (b), Each trichromatic face contributes at most two pieces at each level of the decompo-

sition tree above it until reaching a piece of the 𝑟 -division. Since the number of boundary vertices

increases exponentially as we go up the decomposition tree, the contribution is asymptotically

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:41

dominated by the largest such ancestor, which is the piece of the 𝑟 -division itself. Since each

piece of the 𝑟 -division has 𝑂 (
√
𝑟) boundary vertices, the contribution of part (b) is bounded by

𝑂 (|𝜕𝑅 |
√
𝑟) = 𝑂 (

√︁
|𝐻 | · |𝜕𝑅 |).

Thus, the total time for finding all trichromatic faces as well as the tree structure is 𝑂̃ (
√︁
|𝐻 | · |𝜕𝑅 |).

We now remove the assumption that there are no empty Voronoi cells. To this end, we first run

FR-Dijkstra as above on the union of star 𝐾 and the DDGs of pieces in P. Then, for every site 𝑠 that
is not a child of the root in the obtained shortest path tree 𝑇 , we override its additive weight with

its distance from 𝑢, and store a pointer from this site to its ancestor (site) 𝑠′ in 𝑇 that is a child of

the root. Intuitively, 𝑠 becomes responsible for the vertices 𝑣 of the Voronoi cell of 𝑠′ for which the

shortest 𝑠′-to-𝑣 path contains 𝑠 . Our tie-breaking rule ensures that with the new additive weights,

𝑠 ∈ Vor(𝑠). This concludes the proof of Theorem 8.1. □

(B/C) Voronoi Diagrams
The additive weights of all Voronoi diagrams can be computed by running FR-Dijkstra

on a union of appropriate DDGs. Specific to VD
∗
out
(𝑢𝑖 , 𝑅𝑖+1) in (B), additive weights are

given by considering the union of DDG[𝑅𝑖],DDG[𝑅out𝑖 ∩ 𝑅𝑖+1],DDG[𝑅out𝑖+1] in 𝑂̃ (
√
𝑟𝑖+1)

time. For VD
∗
out
(𝑢𝑖 , 𝑅𝑖) in (C), we consider the union of DDG[𝑅𝑖],DDG[𝑅out𝑖] and additive

weights can be computed in time 𝑂̃ (√𝑟𝑖). The overall time to compute additive weights is

𝑂̃ (∑𝑖
𝑛
𝑟𝑖

√
𝑟𝑖
√
𝑟𝑖+1) = 𝑂̃ (𝑚𝑛1+1/(2𝑚)).

By Theorem 8.1, the total construction time for the dual representations is

𝑂̃

(∑︁
𝑖

𝑛

𝑟𝑖

√
𝑟𝑖

√︃
𝑛
√
𝑟𝑖+1 +

∑︁
𝑖

𝑛

𝑟𝑖

√
𝑟𝑖

√︃
𝑛
√
𝑟𝑖

)
= 𝑂̃

(∑︁
𝑖

𝑛3/2+1/(4𝑚)

𝑟
1/4
𝑖

)
= 𝑂̃

(
𝑛3/2+1/(4𝑚)

)
,

which is also the construction time for parts (B) and (C).

(D) Site Tables and Side Tables
We focus on the site table and side table for a specific VD

∗
out
(𝑢, 𝑅𝑖), and do some preparations.

Observe that the union of

DDG[𝑅out𝑖 ∩ 𝑅𝑖+1],DDG[𝑅out𝑖+1 ∩ 𝑅𝑖+2], . . . ,DDG[𝑅out𝑚−2 ∩ 𝑅𝑚−1],DDG[𝑅out𝑚−1]
contains exactly all boundary vertices in 𝑅out𝑖 of ancestors 𝑅𝑖 , 𝑅𝑖+1, . . . , 𝑅𝑚−1. We use 𝐻 to

denote this union with an artificial super-source 𝑢′ connected to each site 𝑠 ∈ 𝜕𝑅𝑖 with
weight 𝜔 (𝑠), and construct the shortest path tree 𝑇𝐻 in 𝐻 from the super-source 𝑢′ using the

FR-Dijkstra algorithm in 𝑂̃ (
√
𝑛) time.

Remember that the site table stores the first and last vertices of each site-centroid 𝑠-to-𝑦 path

on the boundary of each ancestor 𝑅𝑖′ (𝑖
′ ≥ 𝑖). We first find the last vertex 𝑥 on the 𝑠-to-𝑦 path

belonging to 𝐻 . Assume that 𝑦 ∈ 𝑅𝑘+1 but 𝑦 ∉ 𝑅𝑘 , where 𝑅𝑘 , 𝑅𝑘+1 are ancestors of 𝑅𝑖 . We can

observe that 𝑥 is the vertex in 𝜕𝑅𝑘 ∪ 𝜕𝑅𝑘+1 with the minimal dist𝐻 (𝑢′, 𝑥) + dist𝑅out

𝑘
∩𝑅𝑘+1 (𝑥,𝑦),

breaking ties in favor of larger dist𝐻 (𝑢′, 𝑥). The former is given by 𝑇𝐻 and the latter can be

found by querying MSSP structures in (F) for 𝑅out
𝑘
∩ 𝑅𝑘+1. The calculation of 𝑥 needs time

𝑂̃ (|𝜕𝑅𝑘+1 |) = 𝑂̃ (
√
𝑛). Observe that the 𝑢′-to-𝑥 path on 𝑇𝐻 includes all boundary vertices of

ancestor regions on the 𝑠-to-𝑦 path. By retrieving the 𝑢′-to-𝑥 path on 𝑇𝐻 in 𝑂 (
√
𝑛) time, we

can get the required information for the site table. The construction time of a site table for

VD
∗
out
(𝑢, 𝑅𝑖) is 𝑂̃ (

√
𝑟𝑖
√
𝑛).

In the side table, we will store the relationship (left/right/Null) between each site-centroid-

site chord 𝐶 =
−−−−−−−−−−→𝑠 𝑗𝑦 𝑗𝑦 𝑗−1𝑠 𝑗−1 (using the notations in Figure 6) and each ancestor 𝑅out

𝑖′ (𝑖′ ≥ 𝑖).
With the technique used in the construction of site tables, we can extract all vertices of 𝐶

on each 𝜕𝑅𝑖′ from 𝑇𝐻 , and then determine the relationship between 𝐶 and each 𝑅out
𝑖′ with

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:42 Charalampopoulos et al.

boundary vertices on 𝐶 . For each 𝑅out
𝑖′ such that 𝐶 contains no vertices on 𝜕𝑅𝑖′ , we pick an

arbitrary vertex 𝑧 on 𝜕𝑅𝑖′ . We can retrieve from 𝑇𝐻 the 𝑢′-to-𝑧 path and find the site 𝑠𝑧 such

that 𝑧 ∈ Vor(𝑠𝑧). This can be done in 𝑂 (
√
𝑛) time. With 𝑇𝐻 and the MSSP structures from

part (F), we can determine the pairwise relationships among 𝑠 𝑗 -to-𝑦 𝑗 , 𝑠 𝑗−1-to-𝑦 𝑗−1, and 𝑠𝑧-to-𝑧

shortest paths and know whether 𝑧 lies to the left or right of 𝐶 , which immediately shows

the relationship between 𝐶 and 𝑅out
𝑖′ . The construction time for a side table of VD

∗
out
(𝑢, 𝑅𝑖) is

𝑂̃ (𝑚√𝑟𝑖
√
𝑛).

The total time for building all site tables and side tables is

𝑂̃

(∑︁
𝑖

𝑚
𝑛

𝑟𝑖

√
𝑟𝑖
√
𝑟𝑖+1
√
𝑛

)
= 𝑂̃

(
𝑚2𝑛3/2+1/(2𝑚)

)
.

(E) Chord Trees and Piece Trees
Recall that the chord tree 𝑇

𝑅𝑖
𝑞 is obtained from the shortest path tree in 𝐺 sourced from

𝑞 ∈ 𝜕𝑅𝑖 by contracting all paths between vertices in 𝜕𝑅𝑖 into single edges. Thus, it can be

computed by running FR-Dijkstra on the union of DDG[𝑅𝑖] and DDG[𝑅out𝑖] in 𝑂̃ (
√
𝑟𝑖) time.

Regarding the construction of the piece tree T𝑅𝑖
𝑞 , we first extract all the chords on 𝑇

𝑅𝑖
𝑞 in

𝑅out𝑖 , i.e., the chord set C𝑅𝑖𝑞 . We treat each chord in C𝑅𝑖𝑞 as an undirected edge and consider

the undirected planar graph 𝑄 which is the union of C𝑅𝑖𝑞 and the boundary cycle on 𝜕𝑅𝑖 .

Observe that each piece in P𝑅𝑖
𝑞 relates to a face of 𝑄 . The piece tree T𝑅𝑖

𝑞 can be computed in

𝑂̃ (√𝑟𝑖) time, by taking the dual 𝑄∗ and removing the vertex corresponding to the face on 𝜕𝑅.

With the graph𝑄 and the piece tree T𝑅𝑖
𝑞 , the data structure supportingMaximalChord and

AdjacentPiece in Lemma 6.6 can also be constructed in time 𝑂̃ (√𝑟𝑖) for the given 𝑞, 𝑅𝑖 .
The total time to compute part (E) is 𝑂̃ (∑𝑖

𝑛
𝑟𝑖

√
𝑟𝑖
√
𝑟𝑖) = 𝑂̃ (𝑛𝑚).

The overall construction time is 𝑂̃ (𝑛3/2+1/𝑚 + 𝑛1+1/𝑚+1/𝜅) since𝑚 and 𝜅 should be functions of 𝑛

that are 𝑂 (log𝑛).

A preprocessing-time vs. query-time tradeoff. No smooth tradeoff between the 𝑂̃ (𝑛)-time prepro-

cessing and 𝑂̃ (
√
𝑛)-query time oracle of Fakcharoenphol and Rao [28], and the oracle presented

in this paper is known. Let us however note, that the oracle of [14] can be adapted to give the

following tradeoff. For any 𝑟 = 𝑛𝑥 with constant 𝑥 ∈ (0, 1], there is an oracle that can be constructed

in 𝑛3/2+𝑜 (1)/𝑟 1/4 time, occupies 𝑛1+𝑜 (1) space, and answers queries in 𝑟 1/2+𝑜 (1) time. We now sketch

how this tradeoff can be achieved. The 𝑛1+𝑜 (1) -space, 𝑛𝑜 (1) -query time oracle presented in [14]

makes use of an ®𝑟 -division, and stores similar Voronoi diagrams as those presented in this paper;

the main difference lies in how centroids are handled. The sole bottleneck in its construction is

the construction of Voronoi diagrams, with everything else requiring time 𝑛1+𝑜 (1) . Let 𝑘 be the

successor of 𝑟 in ®𝑟 . We obtain the tradeoff by building the Voronoi diagrams (using Theorem 8.1)

only for pieces in 𝑟𝑖 -divisions with 𝑖 ≥ 𝑘 in total time

𝑂̃

(∑︁
𝑖≥𝑘

𝑛

𝑟𝑖

√
𝑟𝑖

√︃
𝑛
√
𝑟𝑖+1

)
= 𝑛3/2+𝑜 (1)/𝑟 1/4 .

Now consider a query dist𝐺 (𝑢, 𝑣). The case where 𝑣 ∈ 𝑅𝑘 is simple and can be handled using

FR-Dijkstra in 𝑂̃ (
√
𝑟) time. In the complementary case, we first perform FR-Dijkstra from the

source 𝑢 in the union of

DDG[𝑅out
0
∩ 𝑅1],DDG[𝑅out1

∩ 𝑅2], . . . ,DDG[𝑅out𝑘−1 ∩ 𝑅𝑘],DDG[𝑅
out

𝑘
],

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:43

and then issue distance queries to 𝑣 from each of the boundary vertices of 𝑅𝑘 . Finally, we return

the minimum of dist𝐺 (𝑢, 𝑠) + dist𝑅out

𝑘
(𝑠, 𝑣) over all 𝑠 ∈ 𝜕𝑅𝑘 .

9 MULTIPLE HOLES AND NONSIMPLE CYCLES
We have assumed for simplicity that all regions are bounded by a simple cycle, and therefore have

a single hole. We now show how these assumptions can be removed.

Let us first illustrate how a region 𝑅 may get a hole with a non-simple boundary cycle. The

hierarchical decomposition algorithm of Klein, Mozes, and Sommer [46] produces a binary decom-

position tree, of which our ®𝑟 -division is a coarsening. It proceeds by finding a separating cycle

(as in Miller [52]), and recursively decomposes the graph inside the cycle and outside the cycle.
12

At intermediate stages the working graph contains several holes, but Miller’s theorem [52] only

guarantees that a small cycle separator exists if the graph is triangulated. To that end, the decom-

position [46] puts an artificial vertex inside each hole and triangulates the hole. See Figure 15(a,b).

If the cycle separator 𝐶 (blue cycle in Figure 15(b)) includes a hole-vertex 𝑣 , we splice out 𝑣 and

replace it with an interval of the boundary of the hole. If 𝐶 also includes edges on the boundary

of the hole (Figure 15(c)), the modified cycle may not be simple. If this is the case, we “cut” along

non-simple parts of the cycle, replicating all such vertices and their incident cycle edges. We then

join pairs of identical vertices with zero-length edges (pink edges in Figure 15(c)), and triangulate

with large-length edges. This transformation clearly preserves planarity and does not change the

underlying metric.
13

Turning to the issue of multiple holes, we first make some observations about their structural

organization. Fix any hole 𝑔 of region 𝑅𝑖+1 and let 𝑅𝑖 be a child of 𝑅𝑖+1. There is a unique hole

par𝑅𝑖
(𝑔) in 𝑅𝑖 such that 𝑔 lies in 𝑅

par𝑅𝑖
(𝑔),out

𝑖
, which we refer to as the parent of 𝑔 in 𝑅𝑖 . Note that

all holes of 𝑅𝑖+1 have the same parent in 𝑅𝑖 , and that the ancestry of holes goes in the opposite

direction of the ancestry of regions in the ®𝑟 -division. In a distance query we only deal with a series

of regions 𝑅0 = {𝑢}, 𝑅1, . . . , 𝑅𝑚 = 𝐺 . The holes of these regions form a hierarchy, rooted at {𝑢},
which we view as a degenerate hole. For notational simplicity we use “𝑔” to refer to the set of

vertices on hole 𝑔.

Lemma 9.1. There is an 𝑂̃ (𝑛)-space data structure that can be built in 𝑂̃ (𝑛) time, and given 𝑢, 𝑣 can
report in 𝑂 (𝑚) time the regions 𝑅0 = {𝑢}, 𝑅1, · · · , 𝑅𝑡+1 and holes ℎ0, ℎ1, . . . , ℎ𝑡 such that 𝑣 ∈ 𝑅ℎ𝑖 ,out

𝑖
,

𝑣 ∉ 𝑅𝑡 , and 𝑣 ∈ 𝑅𝑡+1.

Proof. Regions 𝑅𝑖 can be reported by following parent pointers in our tree representation of

the ®𝑟 -division, starting from 𝑅0, to which 𝑢 stores a pointer.

For each region 𝑅𝑖 , we can find the correct hole ℎ𝑖 as follows. We store the tree representation

A of the recursive decomposition computed by the algorithm of Klein et al [46]. We also store

some extra information for each hole of each region in A. Due to the structural organization of

holes discussed above, each separator of the 𝑂 (log𝑛) ancestors of a region 𝑃 in A lies in 𝑃ℎ,out

for a unique hole ℎ of 𝑃 . For each region 𝑃 , we store, for each separator of an ancestor of 𝑃 in the

decomposition tree, the hole ℎ of 𝑃 such that 𝑃ℎ,out contains that separator. (This information can

be propagated bottom-up during the construction of A in 𝑂̃ (𝑛) time.) In the query, by performing

an LCA query for the constant size region {𝑣} and 𝑅0 in A, we find the separator 𝐶 that separated

12
The Klein et al. [46] algorithm rotates between finding separators w.r.t. number of vertices, number of boundary vertices,

and number of holes, but this is not relevant to the present discussion.

13
Given a dist𝐺 (𝑢, 𝑣) query, we can map it toDist(𝑢′, 𝑣′, 𝑅0) , where𝑢′ and 𝑣′ are any of the copies of𝑢 and 𝑣, respectively,

and 𝑅0 = {𝑢′ }.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:44 Charalampopoulos et al.

(a) (b)

(c) (d)

Fig. 15. (a) A subgraph with two holes. (b) We put a vertex in each hole and triangulate the hole. (The
triangulation of the exterior hole is not drawn, for clarity.) A simple cycle separator (blue curve) is found
in this graph. (c) The cycle is mapped to a possibly non-simple cycle in the original graph that avoids hole-
vertices. We cut along non-simple parts of the cycle, duplicating the vertices and their adjacent edges on the
cycle. (d) The graph remaining after removing the subgraph enclosed by the cycle from (c).

𝑣 from 𝑢. Then, for each 𝑖 , we can find the appropriate hole ℎ𝑖 of 𝑅𝑖 in 𝑂 (1) time: it is the hole ℎ

such that 𝐶 is in 𝑅
ℎ,out
𝑖

. Over all 𝑖 this takes 𝑂 (𝑚) time. □

9.1 Data Structures
The following modifications are made to parts (A)–(E) of the data structure. In all cases the space

usage is unchanged, asymptotically.

(A) (MSSP Structures) For each 𝑖 ∈ [0,𝑚 − 1], each 𝑅𝑖 ∈ R𝑖 with parent 𝑅𝑖+1 and each hole ℎ𝑖

of 𝑅𝑖 , we build aMSSP structure for 𝑅
ℎ𝑖 ,out
𝑖

that answers distance queries and LCA queries

w.r.t. 𝑅
ℎ𝑖 ,out
𝑖

for vertices in 𝑅
ℎ𝑖 ,out
𝑖

∩ 𝑅𝑖+1.
(B) (Voronoi Diagrams) For each 𝑖 ∈ [0,𝑚 − 2], each 𝑅𝑖 ∈ R𝑖 with parent 𝑅𝑖+1 ∈ R𝑖+1, each

hole ℎ𝑖+1 of 𝑅𝑖+1 with parent ℎ𝑖 = par𝑅𝑖
(ℎ𝑖+1), and each 𝑞 ∈ ℎ𝑖 , we store the dual repre-

sentation of Voronoi diagram VD
∗
out
(𝑞, 𝑅𝑖+1, ℎ𝑖+1) defined to be VD

∗ [𝑅ℎ𝑖+1,out
𝑖+1 , ℎ𝑖+1, 𝜔] with

𝜔 (𝑠) = dist𝐺 (𝑞, 𝑠).
(C) (More Voronoi Diagrams) For each 𝑖 ∈ [1,𝑚 − 1], each 𝑅𝑖 ∈ R𝑖 , each hole ℎ𝑖 of 𝑅𝑖 , and

each 𝑞 ∈ ℎ𝑖 , we store VD∗out (𝑞, 𝑅𝑖 , ℎ𝑖), which is VD
∗ [𝑅ℎ𝑖 ,out

𝑖
, ℎ𝑖 , 𝜔] with 𝜔 (𝑠) = dist𝐺 (𝑞, 𝑠).

(D) (Site Tables; Side Tables) For each 𝑖 and each Voronoi diagram VD
∗
out

= VD
∗
out
(𝑢′, 𝑅𝑖 , ℎ𝑖)

from part (B) or (C), for each node 𝑓 ∗ in the centroid decomposition of VD
∗
out

with 𝑦 𝑗 , 𝑠 𝑗

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:45

defined as usual, 𝑗 ∈ {0, 1, 2}, we store the following. Let 𝑅𝑖′ ∈ R𝑖′ be an ancestor of 𝑅𝑖 , 𝑖
′ > 𝑖 ,

and ℎ𝑖′ be a hole of 𝑅𝑖′ lying in 𝑅
ℎ𝑖 ,out
𝑖

. We store the first and last vertices 𝑞, 𝑥 on the shortest

𝑠 𝑗 -to-𝑦 𝑗 path that lie on ℎ𝑖′ as well as dist𝐺 (𝑢′, 𝑥).
We also store whether𝑅

ℎ𝑖′ ,out
𝑖′ lies to the left or right of the site-centroid-site chord

−−−−−−−−−−→𝑠 𝑗𝑦 𝑗𝑦 𝑗−1𝑠 𝑗−1
in 𝑅ℎ𝑖 ,out, or Null if the relationship cannot be determined.

(E) (Chord Trees; Piece Trees) For each 𝑖 ∈ [1,𝑚 − 1], each 𝑅𝑖 ∈ R𝑖 , each hole ℎ𝑖 of 𝑅𝑖 , and

source 𝑞 ∈ ℎ𝑖 , we store a chord tree 𝑇
𝑅𝑖 ,ℎ𝑖
𝑞 obtained by restricting the SSSP tree with source

𝑞 to ℎ𝑖 . An edge in 𝑇
𝑅𝑖 ,ℎ𝑖
𝑞 is designated a chord if the corresponding path lies in 𝑅

ℎ𝑖 ,out
𝑖

and

is internally vertex disjoint from ℎ𝑖 . C𝑅𝑖 ,ℎ𝑖𝑞 ,P𝑅𝑖 ,ℎ𝑖
𝑞 ,T𝑅𝑖 ,ℎ𝑖

𝑞 are defined analogously, and data

structures are built to answer MaximalChord and AdjacentPiece with respect to 𝑞, 𝑅𝑖 , ℎ𝑖 .

9.2 Query
At the first call to Dist(𝑢, 𝑣, 𝑅0) we apply Lemma 9.1 to generate the regions 𝑅1, . . . , 𝑅𝑡+1 and holes

ℎ1, . . . , ℎ𝑡 that will be accessed in all recursive calls, in 𝑂 (𝑚) time.

The shortest 𝑢-to-𝑣 path in 𝐺 must cross ℎ1, . . . , ℎ𝑡 . The vertex 𝑢𝑖 is now defined to be the last

vertex in ℎ𝑖 on the shortest𝑢-to-𝑣 path. Given𝑢𝑖 , we find𝑢𝑖+1 by solving a point location problem in

VD
∗
out
(𝑢𝑖 , 𝑅𝑖+1, ℎ𝑖+1). The SitePathIndicator and ChordIndicator routines focus on the subgraph

𝑅
ℎ𝑡 ,out
𝑡 rather than 𝑅out𝑡 . The general problem is no different than the single hole case, except that

there may be 𝑂 (1) holes of 𝑅𝑡+1 lying in 𝑅ℎ𝑡 ,out𝑡 , which does not cause further complications.

9.3 Preprocessing
The existence of multiple holes does not create any serious complications in our construction

algorithm.

10 CONCLUSION
In this paper we have proven that it is possible to simultaneously achieve optimal space or query
time, up to a log

2+𝑜 (1) 𝑛 factor, and near-optimality in the other complexity measure, up to an 𝑛𝑜 (1)

factor. The main open question in this area is whether there exists an exact distance oracle with

𝑂̃ (𝑛) space and 𝑂̃ (1) query time.

In terms of the parameter𝑚 (the depth of the ®𝑟 -division), our distance oracle uses space 𝑂̃ (𝑛1+1/𝑚)
and has query time 𝑂̃ (2𝑚). The exponential dependence on𝑚 arises from the fact that Dist solves
one point location problem, but our point location routine narrows the number of Voronoi cells to

two candidates, which are resolved with two recursive calls toDist at a higher level of the ®𝑟 -divsion.
Avoiding this exponential dependence on𝑚 may require a completely different approach to the

problem.

We highlight two more open problems. The construction time of our oracle is 𝑛3/2+𝑜 (1) . It is an
important open question to compute an oracle that is optimal in space, query time, and construction

time, up to 𝑛𝑜 (1) factors. See [15] for a recent specialized oracle with near-linear construction

time. A different direction is to find efficient distance oracles for graphs embeddable on surfaces of

bounded genus, as we believe that the distance oracle described in Section 4.5 can be improved.

Acknowledgements. We thank Danny Sleator and Bob Tarjan for discussing update/query time

tradeoffs for dynamic trees.

REFERENCES
[1] Ittai Abraham and Cyril Gavoille. On approximate distance labels and routing schemes with affine stretch. In

Proceedings of the 25th International Symposium on Distributed Computing (DISC), volume 6950 of Lecture Notes in

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:46 Charalampopoulos et al.

Computer Science, pages 404–415, 2011.
[2] Rachit Agarwal. The space-stretch-time tradeoff in distance oracles. In Proceedings of the 22nd European Symposium

on Algorithms (ESA), volume 8737 of Lecture Notes in Computer Science, pages 49–60, 2014.
[3] Srinivasa Rao Arikati, Danny Z. Chen, L. Paul Chew, Gautam Das, Michiel H. M. Smid, and Christos D. Zaroliagis.

Planar spanners and approximate shortest path queries among obstacles in the plane. In Proceedings 4th Annual
European Symposium on Algorithms (ESA), volume 1136 of Lecture Notes in Computer Science, pages 514–528, 1996.

[4] Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Proceedings of the 4th Latin American
Symposium on Theoretical Informatics (LATIN), volume 1776 of Lecture Notes in Computer Science, pages 88–94. Springer,
2000.

[5] Michael A. Bender and Martin Farach-Colton. The level ancestor problem simplified. Theor. Comput. Sci., 321(1):5–12,
2004.

[6] Glencora Borradaile, Piotr Sankowski, and Christian Wulff-Nilsen. Min 𝑠𝑡 -cut oracle for planar graphs with near-linear

preprocessing time. ACM Transactions on Algorithms, 11(3):1–29, 2015.
[7] Gerth Stølting Brodal, Pooya Davoodi, and S Srinivasa Rao. Path minima queries in dynamic weighted trees. In

Proceedings of the 12th Int’l Symposium on Algorithms and Data Structures (WADS), pages 290–301, 2011.
[8] Gerth Stølting Brodal, Rolf Fagerberg, Christian N. S. Pedersen, and Anna Östlin. The complexity of constructing

evolutionary trees using experiments. In Automata, Languages and Programming, 28th International Colloquium, ICALP
2001, pages 140–151, 2001.

[9] Sergio Cabello. Many distances in planar graphs. Algorithmica, 62(1-2):361–381, 2012.
[10] Sergio Cabello. Subquadratic algorithms for the diameter and the sum of pairwise distances in planar graphs. ACM

Trans. Algorithms, 15(2):21:1–21:38, 2019.
[11] Sergio Cabello, Erin W. Chambers, and Jeff Erickson. Multiple-source shortest paths in embedded graphs. SIAM J.

Comput., 42(4):1542–1571, 2013.
[12] Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. Homology flows, cohomology cuts. SIAM J. Comput., 41(6):1605–

1634, 2012.

[13] Timothy M. Chan and Dimitrios Skrepetos. Faster approximate diameter and distance oracles in planar graphs.

Algorithmica, 81(8):3075–3098, 2019.
[14] Panagiotis Charalampopoulos, Paweł Gawrychowski, Shay Mozes, and Oren Weimann. Almost optimal distance

oracles for planar graphs. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC), pages
138–151, 2019.

[15] Panagiotis Charalampopoulos, Paweł Gawrychowski, Shay Mozes, and OrenWeimann. An almost optimal edit distance

oracle. In Proceedings of the 48th Int’l Colloq. on Algorithms, Languages, and Programming (ICALP), 2021.
[16] Panagiotis Charalampopoulos and Adam Karczmarz. Single-source shortest paths and strong connectivity in dynamic

planar graphs. J. Comput. Syst. Sci., 124:97–111, 2022.
[17] Panagiotis Charalampopoulos, Shay Mozes, and Benjamin Tebeka. Exact distance oracles for planar graphs with

failing vertices. ACM Trans. Algorithms, 18(2):18:1–18:23, 2022.
[18] Shiri Chechik. Approximate distance oracles with improved bounds. In Proceedings of the 47th Annual ACM Symposium

on Theory of Computing (STOC), pages 1–10, 2015.
[19] Danny Z. Chen and Jinhui Xu. Shortest path queries in planar graphs. In Proceedings of the 32nd Annual ACM

Symposium on Theory of Computing (STOC), pages 469–478, 2000.
[20] Vincent Cohen-Addad, Søren Dahlgaard, and Christian Wulff-Nilsen. Fast and compact exact distance oracle for planar

graphs. In Proceedings 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 962–973, 2017.
[21] Paul F. Dietz. Fully persistent arrays. In Proceedings of the First Workshop on Algorithms and Data Structures (WADS),

volume 382 of Lecture Notes in Computer Science, pages 67–74, 1989.
[22] Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, FriedhelmMeyer auf der Heide, Hans Rohnert, and Robert Endre

Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM J. Comput., 23(4):738–761, 1994.
[23] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, 1(1):269–271, 1959.
[24] Hristo Djidjev. Efficient algorithms for shortest path queries in planar digraphs. In Proceedings of the 22nd International

Workshop on Graph-Theoretic Concepts in Computer Science (WG), volume 1197 of Lecture Notes in Computer Science,
pages 151–165, 1996.

[25] James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan. Making data structures persistent. J.
Comput. Syst. Sci., 38(1):86–124, 1989.

[26] Jeff Erickson, Kyle Fox, and Luvsandondov Lkhamsuren. Holiest minimum-cost paths and flows in surface graphs. In

Proceedings of the 50th Annual ACM Symposium on Theory of Computing (STOC), pages 1319–1332, 2018.
[27] Jeff Erickson and Sariel Har-Peled. Optimally cutting a surface into a disk. Discret. Comput. Geom., 31(1):37–59, 2004.
[28] Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest paths, and near linear time. J.

Comput. Syst. Sci., 72(5):868–889, 2006.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:47

[29] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput.,
16(6):1004–1022, 1987.

[30] Viktor Fredslund-Hansen, Shay Mozes, and Christian Wulff-Nilsen. Truly subquadratic exact distance oracles with

constant query time for planar graphs. CoRR, abs/2009.14716, 2020.
[31] Paweł Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren Weimann. Voronoi diagrams on planar

graphs, and computing the diameter in deterministic 𝑂̃ (𝑛5/3) time. In Proceedings of the 29th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 495–514, 2018.

[32] Paweł Gawrychowski, Shay Mozes, Oren Weimann, and Christian Wulff-Nilsen. Better tradeoffs for exact distance

oracles in planar graphs. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 515–529, 2018.

[33] Davide Della Giustina, Nicola Prezza, and Rossano Venturini. A new linear-time algorithm for centroid decomposition.

In String Processing and Information Retrieval - 26th International Symposium, SPIRE 2019, pages 274–282, 2019.
[34] Qian-Ping Gu and Gengchun Xu. Constant query time (1 + 𝜖)-approximate distance oracle for planar graphs. Theor.

Comput. Sci., 761:78–88, 2019.
[35] Torben Hagerup. Still simpler static level ancestors. CoRR, abs/2005.11188, 2020.
[36] Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. Deterministic dictionaries. J. Algorithms, 41(1):69–85, 2001.
[37] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors. SIAM J. Comput.,

13(2):338–355, 1984.

[38] Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algorithms with polylogarithmic time

per operation. J. ACM, 46(4):502–516, 1999.

[39] Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. J. ACM, 24(1):1–13, 1977.

[40] Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. Submatrix maximum queries in monge matrices and

partial monge matrices, and their applications. ACM Trans. Algorithms, 13(2):26:1–26:42, 2017.
[41] Adam Karczmarz and Piotr Sankowski. A deterministic parallel APSP algorithm and its applications. In Proceedings of

the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 255–272, 2021.
[42] Ken-ichi Kawarabayashi, Philip N. Klein, and Christian Sommer. Linear-space approximate distance oracles for

planar, bounded-genus and minor-free graphs. In Proceedings of the 38th Int’l Colloquium on Automata, Languages and
Programming (ICALP), volume 6755 of Lecture Notes in Computer Science, pages 135–146, 2011.

[43] Ken-ichi Kawarabayashi, Christian Sommer, and Mikkel Thorup. More compact oracles for approximate distances

in undirected planar graphs. In Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
550–563, 2013.

[44] Philip N. Klein. Preprocessing an undirected planar network to enable fast approximate distance queries. In Proceedings
of the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 820–827, 2002.

[45] Philip N. Klein. Multiple-source shortest paths in planar graphs. In Proceedings of the 16th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 146–155, 2005.

[46] Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recursive separator decompositions for planar graphs

in linear time. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC), pages 505–514, 2013.
[47] Jakub Lacki and Piotr Sankowski. Min-cuts and shortest cycles in planar graphs in𝑂 (𝑛 log log𝑛) time. In Proceedings

of the 19th Annual European Symposium on Algorithms (ESA), pages 155–166, 2011.
[48] Hung Le and Christian Wulff-Nilsen. Optimal approximate distance oracle for planar graphs. In Proceedings of the

62nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 363–374, 2021.
[49] Richard J. Lipton and Robert Endre Tarjan. Applications of a planar separator theorem. SIAM J. Comput., 9(3):615–627,

1980.

[50] Yaowei Long and Seth Pettie. Planar distance oracles with better time-space tradeoffs. In Proceedings of the 32nd
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2517–2536, 2021.

[51] Dániel Marx and Michal Pilipczuk. Optimal parameterized algorithms for planar facility location problems using

voronoi diagrams. ACM Trans. Algorithms, 18(2):13:1–13:64, 2022.
[52] Gary L. Miller. Finding small simple cycle separators for 2-connected planar graphs. J. Comput. Syst. Sci., 32(3):265–279,

1986.

[53] Shay Mozes, Kirill Nikolaev, Yahav Nussbaum, and Oren Weimann. Minimum cut of directed planar graphs in

𝑂 (𝑛 log log𝑛) time. In Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 477–494,
2018.

[54] Shay Mozes and Christian Sommer. Exact distance oracles for planar graphs. In Proceedings of the 23rd ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 209–222, 2012.

[55] Shay Mozes and Christian Wulff-Nilsen. Shortest paths in planar graphs with real lengths in𝑂 (𝑛 log
2 𝑛/log log𝑛)

time. In Proceedings of the 18th Annual European Symposium on Algorithms (ESA), pages 206–217, 2010.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:48 Charalampopoulos et al.

[56] Yahav Nussbaum. Improved distance queries in planar graphs. In Proceedings 12th Int’l Workshop on Algorithms and
Data Structures (WADS), pages 642–653, 2011.

[57] Mihai Pǎtraşcu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe model. SIAM J. Comput., 35(4):932–963,
2006.

[58] Mihai Pǎtraşcu and Liam Roditty. Distance oracles beyond the Thorup-Zwick bound. SIAM J. Comput., 43(1):300–311,
2014.

[59] Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J. Comput. Syst. Sci., 26(3):362–391,
1983.

[60] Christian Sommer. Shortest-path queries in static networks. ACM Computing Surveys, 46(4):1–31, 2014.
[61] Christian Sommer, Elad Verbin, and Wei Yu. Distance oracles for sparse graphs. In Proceedings of the 50th IEEE

Symposium on Foundations of Computer Science (FOCS), pages 703–712, 2009.
[62] E. Sperner. Neuer beweis für die invarianz der dimensionszahl und des gebietes. Abh. Math. Semin. Hamburg. Univ.,

Bd. 6:265–272, 1928.

[63] Mikkel Thorup. Compact oracles for reachability and approximate distances in planar digraphs. J. ACM, 51(6):993–1024,

2004.

[64] Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005.

[65] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority queue. Math. Syst.
Theory, 10:99–127, 1977.

[66] D. E. Willard. Log-logarithmic worst-case range queries are possible in space Θ(𝑁) . Information Processing Letters,
17(2):81–84, 1983.

[67] ChristianWulff-Nilsen. Algorithms for planar graphs and graphs in metric spaces. PhD thesis, University of Copenhagen,

2010.

[68] Christian Wulff-Nilsen. Approximate distance oracles for planar graphs with improved query time-space tradeoff. In

Proceedings of the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 351–362, 2016.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:49

A MSSP (PROOF OF LEMMA 2.1)
Let us recall the setup. We have a planar graph 𝐻 with a distinguished face 𝑓 , and wish to answer

dist𝐻 (𝑠, 𝑣) queries w.r.t. any 𝑠 on 𝑓 and 𝑣 ∈ 𝑉 (𝐻), and LCA queries w.r.t. any 𝑠 on 𝑓 and𝑢, 𝑣 ∈ 𝑉 (𝐻).
Klein [45] proved that if we move the source vertex 𝑠 around 𝑓 and record all the changes to the

SSSP tree, every edge in 𝐸 (𝐻) can be swapped into and out of the SSSP at most once, i.e., there are

𝑂 (|𝐻 |) updates in total.

A.1 Adding Functionality to Link-Cut Trees MSSP
In this subsection, we explain how to augment theMSSP data structure of Klein [11, 45] to support

the lowest common ancestor query of Lemma 2.1. The MSSP data structure represents the shortest

path trees rooted at the vertices 𝑆 of the distinguished face 𝑓 using a partially persistent [25]

link-cut tree [59]. The persistent representation allows us to access the desired version of the tree

with a constant-time overhead. Let 𝑇𝑠 denote the version of the shortest path tree rooted at 𝑠 . The

edges of the link-cut tree𝑇𝑠 are partitioned into solid and dashed edges. Each maximal path of solid

edges is called a solid path, which is represented by a binary search tree, where the left-right order

in the search tree corresponds to the top-bottom order in the solid path (the root is top).

To locate the LCA 𝑥 of 𝑢 and 𝑣 , we list the solid paths that intersect the path from 𝑢 to the root

of 𝑇𝑠 , and those that intersect the path from 𝑣 to the root of 𝑇𝑠 . Let 𝑃 be the first solid path in both

lists, and let 𝑢′ and 𝑣 ′ be the nearest ancestors of 𝑢 and 𝑣 that lie on 𝑃 . The LCA 𝑥 is the leftmost

of 𝑢′ and 𝑣 ′ in the search tree representing 𝑃 . Once we have found 𝑥 , we can retrieve the edge

𝑒𝑧 outgoing from 𝑥 and leading to the subtree containing 𝑧 ∈ {𝑢, 𝑣} (when 𝑥 ≠ 𝑧) in additional

𝑂 (log𝑛) time.

A.2 MSSP via Euler Tour Trees
Generally, if we maintain the SSSP tree as the source travels around 𝑓 in a dynamic data structure

with update time 𝑡𝑢 and query time 𝑡𝑞 (for distance and LCA queries), the universal persistence

method for RAM data structures (see [21]) yields an MSSP data structure with space 𝑂 (|𝐻 |𝑡𝑢)
and query time 𝑂 (𝑡𝑞 log log |𝐻 |). Thus, to establish Lemma 2.1 it suffices to design a dynamic data

structure for the following:

InitTree(𝑠★,𝑇): Initialize a directed spanning tree 𝑇 from root 𝑠★. Edges have real-valued

lengths.

Swap(𝑣, 𝑝, 𝑙): Let 𝑝′ be the parent of 𝑣 ; 𝑝 is not a descandant of 𝑣 . Update 𝑇 ← 𝑇 \ {(𝑝′, 𝑣)} ∪
{(𝑝, 𝑣)}, where (𝑝, 𝑣) has length 𝑙 .

Dist(𝑣): Return dist𝑇 (𝑠★, 𝑣).
LCA(𝑢, 𝑣): Return the LCA 𝑦 of 𝑢 and 𝑣 and the first edges 𝑒𝑢, 𝑒𝑣 on the paths from 𝑦 to 𝑢 and

from 𝑦 to 𝑣 , respectively.

Here 𝑠★ will be a fixed root vertex embedded in 𝑓 with a single, weight-zero, out-edge to the

current root on 𝑓 . Changes to the SSSP tree are effected with 𝑂 (|𝐻 |) Swap operations. Klein [45]

used Sleator and Tarjan’s Link-Cut trees [59], which support Swap, Dist, and LCA (among other

operations) in𝑂 (log |𝑇 |) time. We will use a souped-up version of Henzinger and King’s [38] Euler

Tour trees. Let ET(𝑇) be an Euler tour of 𝑇 starting and ending at 𝑠★. The elements of ET(𝑇) are
edges, and each edge of 𝑇 appears twice in ET(𝑇), once in each direction. Each edge in 𝑇 points to

its two occurrences in ET(𝑇).
Suppose 𝑇ante is the tree before a Swap operation and 𝑇post the tree afterward. It is easy to see

that ET(𝑇post) can be derived from ET(𝑇ante) by 𝑂 (1) splits and concatenations, and renaming the

two elements corresponding to the swapped edge. See Figure 16. We will argue that the dynamic

tree operations Swap, Dist, LCA can be implemented using the following list operations.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:50 Charalampopoulos et al.

Fig. 16. The effect of Swap(𝑑, 𝑖, ·) on the Euler Tour. The interval ((𝑏, 𝑑), (𝑑, 𝑒), · · · , (𝑒, 𝑑), (𝑑, 𝑏)) is spliced
out and inserted between (ℎ, 𝑖) and (𝑖, 𝑗), and the elements (𝑏, 𝑑), (𝑑,𝑏) are renamed (𝑖, 𝑑), (𝑑, 𝑖).

InitList(𝐿): Initialize a list 𝐿 of weighted elements.

Split(𝑒0): Element 𝑒0 appears in some list 𝐿. Split 𝐿 immediately after element 𝑒0, resulting in

two lists.

Concatenate(𝐿0, 𝐿1): Concatenate 𝐿0 and 𝐿1, resulting in one list.

Add(𝑒0, 𝑒1, 𝛿): Here 𝑒0, 𝑒1 are elements of the same list 𝐿. Add 𝛿 ∈ R to the weight of all elements

in 𝐿 between 𝑒0 and 𝑒1 inclusive.

Weight(𝑒0): Return the weight of 𝑒0.

RangeMin(𝑒0, 𝑒1): Return the minimum-weight element between 𝑒0 and 𝑒1 inclusive. If there

are multiple minima, return the first one.
To implement Dist and LCA we will actually use the list data structure with different weight

functions. For Dist, the weight of an edge (𝑥,𝑦) in ET(𝑇) is dist𝑇 (𝑠★, 𝑦). Thus, Dist is answered
with a call toWeight. Each Swap(𝑣, 𝑝, 𝑙) is effected with𝑂 (1) Split and Concatenate operations,
renaming the elements of the swapped edge, as well as oneAdd(𝑒0, 𝑒1, 𝛿) operation. Here (𝑒0, . . . , 𝑒1)
is the sub-list corresponding to the subtree rooted at 𝑣 , and 𝛿 = dist𝑇post (𝑠★, 𝑣) − dist𝑇ante (𝑠★, 𝑣) is
the change in distance to 𝑣 , and hence all descendants of 𝑣 .

To handle LCA queries, we use the list data structure where the weight of (𝑥,𝑦) is the depth
of 𝑦 in 𝑇 , i.e., the distance from 𝑠★ to 𝑦 under the unit length function. Once again, a Swap is

implemented with 𝑂 (1) Split and Concatenate operations, and one Add operation. Consider

an LCA(𝑢, 𝑣) query. Let 𝑒0 = (𝑝𝑢, 𝑢), 𝑒1 = (𝑝𝑣, 𝑣) be the edges into 𝑢 and 𝑣 from their respective

parents, and suppose that 𝑒0 appears before 𝑒1 in ET(𝑇).14 A call to RangeMin(𝑒0, 𝑒1) returns the
first edge 𝑒 = (𝑥,𝑦) in the interval (𝑒0, . . . , 𝑒1) minimizing the depth of 𝑦. It follows that 𝑦 is the

LCA of 𝑢 and 𝑣 . Furthermore, by the tiebreaking rule, if 𝑒 ≠ 𝑒0 then 𝑒 = 𝑒𝑢 is the (reversal of the)

edge leading from 𝑦 towards 𝑢. If 𝑒 = 𝑒0 then 𝑣 is a descendant of 𝑢 and 𝑒𝑢 does not exist. To find

𝑒𝑣 , we retrieve the edge 𝑒 = (𝑦, 𝑝𝑦) in ET(𝑇) from 𝑦 to its parent and let 𝑒′ be its predecessor in
ET(𝑇). (Note that since 𝑠★ has degree 1, 𝑒, 𝑒′ always exist.) We call RangeMin(𝑒1, 𝑒′). Once again,
by the tiebreaking rule it returns the first edge 𝑒𝑣 = (𝑥 ′, 𝑦) incident to 𝑦 in (𝑒1, . . . , 𝑒′), which is the

(reversal of the) first edge on the path from 𝑦 to 𝑣 . See Figure 17.

We have reduced our dynamic tree problem to a dynamic weighted list problem. We now explain

how the dynamic list problem can be solved with balanced trees.

14
As we will see, it is easy to determine which comes first.

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:51

Fig. 17. An illustration of an LCA(𝑒, 𝑗) query. We do aRangeMin query on the interval 𝑒0 = (𝑑, 𝑒), . . . , (𝑖, 𝑗) =
𝑒1 and retrieve the edge 𝑒 = 𝑒𝑒 = (𝑏, 𝑎) with weight depth𝑇 (𝑎). We then find 𝑒 = (𝑎, 𝑠★) and its predecessor
𝑒′ = (ℎ, 𝑎). Another RangeMin query on the interval (𝑖, 𝑗), . . . , (ℎ, 𝑎) returns 𝑒 𝑗 = (ℎ, 𝑎).

Fix a parameter 𝜅 ≥ 1 and let 𝑛 be the total number of elements in all lists. We now argue that

Split, Concatenate, and Add can be implemented in 𝑂 (𝜅𝑛1/𝜅) time andWeight and RangeMin
take 𝑂 (𝜅) time. We store the elements of each list 𝐿 at the leaves of a rooted tree T (𝐿). It satisfies
the following invariants.

I. Each node 𝛾 of T (𝐿) stores a weight offset𝑤 (𝛾), a min-weight value min(𝛾) and a pointer

ptr(𝛾). The weight of (leaf) 𝑒 ∈ 𝐿 is the sum of the𝑤 (·)-values of its ancestors, including 𝑒 .
The sum of min(𝛾) and the𝑤 (·)-values of all strict ancestors of 𝛾 is exactly the weight of the

minimum weight descendant of 𝛾 , and ptr(𝛾) points to this element.

II. Non-root internal nodes have between 𝑛1/𝜅 and 3𝑛1/𝜅 children. In particular, the tree has

height at most 𝜅.

III. Each internal node 𝛾 maintains an 𝑂 (1)-time range minimum structure [4] over the vector

of min(·)-values of its children.
It is easy to show that Split and Concatenate can be implemented to satisfy Invariant II

by destroying/rebuilding 𝑂 (1) nodes at each level of T . Each costs 𝑂 (𝑛1/𝜅) time to update the

information covered by Invariants I and III. The total time is therefore 𝑂 (𝜅𝑛1/𝜅). By Invariant

I, a Weight(𝑒0) query takes 𝑂 (𝜅) time to sum all of 𝑒0’s ancestors’ 𝑤 (·)-values. Consider an
Add(𝑒0, 𝑒1, 𝛿) or RangeMin(𝑒0, 𝑒1) operation. By Invariant II, the interval (𝑒0, . . . , 𝑒1) is covered
by 𝑂 (𝜅𝑛1/𝜅) T -nodes, and furthermore, those nodes can be arranged into less than 2𝜅 contiguous

intervals of siblings. Thus, an Add(𝑒0, 𝑒1) can be implemented in 𝑂 (𝜅𝑛1/𝜅) time by adding 𝛿 to

the𝑤 (·)-values of these nodes and rebuilding the affected range-min structures from Invariant III.

A RangeMin is reduced to 𝑂 (𝜅) range-minimum queries (from Invariant III) and adjusting the

answers by the𝑤 (·)-values of their ancestors (Invariant I). Each range-min query takes 𝑂 (1) time

and there are 𝑂 (𝜅) ancestors with relevant𝑤 (·)-values. Thus RangeMin takes 𝑂 (𝜅) time.

We have shown that the dynamic tree operations necessary for an MSSP structure can be

implemented with a flexible tradeoff between update time and query time. Moreover, this lower

bound meets the Pǎtraşcu-Demaine lower bound [57]. We leave it as an open problem to implement

the complete set of operations supported by Link-Cut trees, with update time 𝑂 (𝜅𝑛1/𝜅) and query

time 𝑂 (𝜅).

Received 24 May 2021; revised 11 June 2022; accepted 4 January 2023

J. ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

	Abstract
	1 Introduction
	1.1 History of Planar Distance Oracles
	1.2 New Results
	1.3 Organization

	2 Preliminaries
	2.1 The Graph and its Embedding
	2.2 Separators and normalnormalr-Divisions
	2.3 Multiple-Source Shortest Paths

	3 Additively Weighted Voronoi Diagrams
	3.1 Point Location in Voronoi Diagrams

	4 A Simple Planar Distance Oracle
	4.1 The Data Structure
	4.2 The Query Algorithm
	4.3 Analysis
	4.4 Dealing with Multiple Holes
	4.5 Digression: Extension to Graphs of Bounded Genus

	5 The Distance Oracle
	5.1 The Query Algorithm

	6 Chords, Pieces, and the Indicator Functions
	6.1 Auxiliary Lemmas and a Special Case of bold0mu mumu SimpleCentroidSearchSimpleCentroidSearchsubsectionSimpleCentroidSearchSimpleCentroidSearchSimpleCentroidSearchSimpleCentroidSearch
	6.2 Chords and Pieces
	6.3 The SitePathIndicator Function
	6.4 The ChordIndicator Function

	7 Analysis
	7.1 Speeding Up the Query Time

	8 Construction
	9 Multiple Holes and Nonsimple Cycles
	9.1 Data Structures
	9.2 Query
	9.3 Preprocessing

	10 Conclusion
	References
	A MSSP (Proof of Lemma 2.1)
	A.1 Adding Functionality to Link-Cut Trees MSSP
	A.2 MSSP via Euler Tour Trees

