1,491 research outputs found

    Measurement of Parity Violation in the Early Universe using Gravitational-wave Detectors

    Full text link
    A stochastic gravitational-wave background (SGWB) is expected to arise from the superposition of many independent and unresolved gravitational-wave signals, of either cosmological or astrophysical origin. Some cosmological models (characterized, for instance, by a pseudo-scalar inflaton, or by some modification of gravity) break parity, leading to a polarized SGWB. We present a new technique to measure this parity violation, which we then apply to the recent results from LIGO to produce the first upper limit on parity violation in the SGWB, assuming a generic power-law SGWB spectrum across the LIGO sensitive frequency region. We also estimate sensitivity to parity violation of the future generations of gravitational-wave detectors, both for a power-law spectrum and for a model of axion inflation. This technique offers a new way of differentiating between the cosmological and astrophysical sources of the isotropic SGWB, as astrophysical sources are not expected to produce a polarized SGWB.Comment: 5 pages, 2 figures, 1 tabl

    Cosmology of the Randall-Sundrum model after dilaton stabilization

    Get PDF
    We provide the first complete analysis of cosmological evolution in the Randall-Sundrum model with stabilized dilaton. We give the exact expansion law for matter densities on the two branes with arbitrary equations of state. The effective four-dimensional theory leads to standard cosmology at low energy. The limit of validity of the low energy theory and possible deviations from the ordinary expansion law in the high energy regime are finally discussed

    A hepatic scaffold from decellularized liver tissue: Food for thought

    Get PDF
    Allogeneic liver transplantation is still deemed the gold standard solution for end-stage organ failure; however, donor organ shortages have led to extended waiting lists for organ transplants. In order to overcome the lack of donors, the development of new therapeutic options is mandatory. In the last several years, organ bioengineering has been extensively explored to provide transplantable tissues or whole organs with the final goal of creating a three-dimensional growth microenvironment mimicking the native structure. It has been frequently reported that an extracellular matrix-based scaffold offers a structural support and important biological molecules that could help cellular proliferation during the recellularization process. The aim of the present review is to underline the recent developments in cell-on-scaffold technology for liver bioengineering, taking into account: (1) biological and synthetic scaffolds; (2) animal and human tissue decellularization; (3) scaffold recellularization; (4) 3D bioprinting; and (5) organoid technology. Future possible clinical applications in regenerative medicine for liver tissue engineering and for drug testing were underlined and dissected

    New bulk scalar field solutions in brane worlds

    Full text link
    We use nonlinear perturbation theory to obtain new solutions for brane world models that incorporate a massive bulk scalar field. We then consider tensor perturbations and show that Newtonian gravity is recovered on the brane for both a light scalar field and for a bulk field with large negative mass. This latter result points to the viability of higher-derivative theories of gravity in the context of bulk extra dimensions.Comment: 4+\epsilon pages, no figure

    Avaliação de linhagens de feijoeiro irrigado na Região de Porangatu-GO.

    Get PDF
    O trabalho objetivou avaliar linhagens elite de feijoeiro dos tipos preto e carioca, do programa de melhoramento dessa cultura na Embrapa, nas condições irrigadas, de clima e solo da Região de Porangatu-GO.bitstream/CNPAF-2010/29741/1/comt-179.pd

    Anisotropies and non-Gaussianity of the cosmological gravitational wave background

    Get PDF
    The stochastic gravitational wave background (SGWB) is expected to be a key observable for gravitational wave (GW) interferometry. Its detection will open a new window to early Universe cosmology and to the astrophysics of compact objects. Using a Boltzmann approach, we study the angular anisotropies of the GW energy density, which is an important tool to disentangle the different cosmological and astrophysical contributions to the SGWB. Anisotropies in the cosmological background are imprinted both at its production and by GW propagation through the large-scale scalar and tensor perturbations of the Universe. The first contribution is not present in the cosmic microwave background radiation (as the Universe is not transparent to photons before recombination), causing an order 1 dependence of the anisotropies on frequency. Moreover, we provide a new method to characterize the cosmological SGWB through its possible deviation from Gaussian statistics. In particular, the SGWB will become a new probe of the primordial non-Gaussianity of the large-scale cosmological perturbations

    Characterizing the cosmological gravitational wave background: Anisotropies and non-Gaussianity

    Get PDF
    A future detection of the stochastic gravitational wave background (SGWB) with gravitational wave (GW) experiments is expected to open a new window on early universe cosmology and on the astrophysics of compact objects. In this paper we study SGWB anisotropies, that can offer new tools to discriminate between different sources of GWs. In particular, the cosmological SGWB inherits its anisotropies both (i) at its production and (ii) during its propagation through our perturbed universe. Concerning (i), we show that it typically leads to anisotropies with order one dependence on frequency. We then compute the effect of (ii) through a Boltzmann approach, including contributions of both large-scale scalar and tensor linearized perturbations. We also compute for the first time the three-point function of the SGWB energy density, which can allow one to extract information on GW non-Gaussianity with interferometers. Finally, we include nonlinear effects associated with long wavelength scalar fluctuations, and compute the squeezed limit of the 3-point function for the SGWB density contrast. Such limit satisfies a consistency relation, conceptually similar to that found in the literature for the case of cosmic microwave background perturbations

    Caracterização da rede de avaliação final de linhagens de feijoeiro-comum da Embrapa Arroz e Feijão no período de1993 a 2008.

    Get PDF
    O objetivo desse trabalho foi caracterizar a etapa de avaliação final de linhagens elite de feijoeiro-comum da Embrapaquanto à distribuição dos ensaios por região geográfica, épocas de semeadura e tipo comercial de grão, no período de 1993 a 2008.CONAFE

    Unidades demonstrativas de feijoeiro comum para pequenos agricultores da região Centro-Sul do Estado do Paraná.

    Get PDF
    Sugerem que a adoção de novas cultivares de feijoeiro comum, desenvolvidas nos programas de melhoramento genético e a difusão de suas vantagens agronômicas sobre os genótipos crioulos, utilizados de geração após geração pelas comunidades familiares do Estado do Paraná, têm contribuído para o aumento da produtividade e renda do pequeno produtor de feijão
    corecore