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A future detection of the stochastic gravitational wave background (SGWB) with gravitational wave
(GW) experiments is expected to open a new window on early universe cosmology and on the astrophysics
of compact objects. In this paper we study SGWB anisotropies, that can offer new tools to discriminate
between different sources of GWs. In particular, the cosmological SGWB inherits its anisotropies both (i) at
its production and (ii) during its propagation through our perturbed universe. Concerning (i), we show that
it typically leads to anisotropies with order one dependence on frequency. We then compute the effect of
(ii) through a Boltzmann approach, including contributions of both large-scale scalar and tensor linearized
perturbations. We also compute for the first time the three-point function of the SGWB energy density,
which can allow one to extract information on GW non-Gaussianity with interferometers. Finally,
we include nonlinear effects associated with long wavelength scalar fluctuations, and compute the
squeezed limit of the 3-point function for the SGWB density contrast. Such limit satisfies a consistency
relation, conceptually similar to that found in the literature for the case of cosmic microwave background
perturbations.
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I. INTRODUCTION

The current ground-based interferometers are close to
reaching the expected sensitivity to detect the stochastic
gravitational wave background (SGWB) from unresolved
astrophysical sources [1]. Future space-based (such as
LISA [2] and DECIGO [3]) and Earth-based (like the
Einstein Telescope [4,5] and Cosmic Explorer [6]) inter-
ferometers have the potential to detect the SGWB of
cosmological origin (see [7–10] for reviews of possible
cosmological sources). It is likely that a detection of
a cosmological SGWB background will require the
ability to discriminate it against the astrophysical signal.
Astrophysical GW background (AGWB) arises from the
superposition of the signals emitted by a large population of

unresolved sources that are mainly dominated by two types
of events: (i) the periodic long-lived sources (e.g., the early
inspiraling phase of binary systems) where the frequency is
expected to evolve very slowly compared to the observation
time; (ii) the short-lived burst sources, e.g., core collapse to
neutron stars or black holes, oscillation modes, r-mode
instabilities in rotating neutron stars, magnetars and super-
radiant instabilities (for example, see [11,12]). Several
techniques have been developed to distinguish among
the various backgrounds. The most obvious tool for this
component separation is the frequency dependence [13], as
several cosmological mechanisms are peaked at some given
characteristic scale. However, future detectors will allow
for a better angular resolution of anisotropies of the
astrophysical background. Therefore, another tool could
be the directionality dependence of the SGWB [14–19]
and, as we explore here, its statistics.
In this work, we discuss graviton propagation through a

Boltzmann approach [15] as it is typically done for the
cosmic microwave background (CMB). Specifically, we
construct and evolve the equation for the distribution f of
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gravitons in a FLRW background, plus first-order scalar and
tensor perturbations (we also consider how nonlinear effects
for the specific case of squeezed non-Gaussianity, as we
discuss at the end of this introduction). At the unperturbed
level, following the isotropy and homogeneity of the back-
ground, the distribution depends only on time and on
theGWfrequencyp=2π (where p⃗ is the physicalmomentum
of thegravitons) through the combinationq≡ pa, wherea is
the scale factor of the universe. Namely, the gravitons freely
propagate, and their physical momentum redshifts during
the propagation. This property is shared by any freemassless
particles, and, in particular, also by the CMB photons. On
the other hand, differently from the photon distribution, the
initial population of gravitons is not expected to be thermal
(as we have in mind production mechanisms, such as
inflation [20,21], phase transitions [22], or enhanced density
perturbations leading to primordial black holes [23–25],
which occur at energies well below the Planck scale) which
leaves in the distribution a sort of “memory” of the initial
state. As we show, the fact that the spectrum is nonthermal
generically results in angular anisotropies that have an order
one dependence on the GW frequency. This is in contrast
with the CMB case, for which this dependence only arises
at second order in perturbation theory.
This initial state will in general be anisotropic, as no

mechanism of GW production can be perfectly homo-
geneous. Additional anisotropies are induced by the GW
propagation in the perturbed universe. As we are interested
in large scale, we work in a regime of a large hierarchy
q ≫ k between the GW (comoving) momentum q and the
(comoving) momentum k of the large scale perturbations.
We confirm that in the angular power spectrum, the Sachs
Wolfe (SW) effect is dominating on large scales also for
gravitons, while the integrated Sachs-Wolfe contribution is
subdominant.
We employ this approach to study the non-Gaussianity

of the SGWB energy density. Although we are not aware of
any dedicated analysis in this sense, it is reasonable to
expect that the SGWB produced by incoherent astrophysi-
cal sources is Gaussian, due to the central limit theorem.
An analysis of detection methods of non-Gaussianity in a
GWB induced by short-duration signals has been done
in [26], while in [27,28] it has been studied how to use
higher-order cumulants to characterize properties of non-
Gaussianity in the AGWB (see also [29] for a recent
analysis). In light of this fact, a measurement of non-
Gaussianity would be a signal of large scale coherency, that
would likely point to a cosmological origin of the signal.
Previous works showed that inflation can result in a
sizeable and nonvanishing 3-point function hh3i for the
graviton wave function, but that this is generically non-
observable in interferometers [23,24], due to the
decoherence of the phase the GW wave-function h induced
by the GW propagation, and due to the finite duration of the
measurement (see [30] for a possible exception to this

conclusion, occurring for a very specific shape of the
bispectrum). Since the phase does not affect the GWenergy
density, we argue that the energy density is a much better
variable to study the statistics of the SGWB. Also in this
case, the non-Gaussianity can be induced both by the
production mechanism and the propagation. As an example
of the former, in Ref. [25] we recently computed the 3-point
function of the SGWB energy density that arises in the
presence of non-Gaussianity of the scalar perturbations of
the local shape (in the presence of this non-Gaussianity, a
long-scale mode of momentum k can modulate the power
of the short-scalr scalar perturbations that are responsible
for the primordial black holes formation). Here we study
the 3-point function induced by the GW propagation. This
is also proportional to the non-Gaussianity of the scalar
perturbations. In this sense, the SGWB can be used as a
novel probe (beyond the CMB and the large scale structure)
of the non-Gaussianity of the scalar perturbations.
Although in most of this work we limit our attention to

linearized fluctuations, in Sec. VI we consider nonlinear
effects induced by long-wavelength scalar perturbations,
which modulate correlation functions involving short-
wavelength modes. We make use of a powerful method
first introduced by Weinberg in [31], which focuses on
adiabatic systems, and identifies the effects of long modes
with an appropriate coordinate transformation. Applying
this method to our setup, we compute how nonlinearities
induce a nonvanishing squeezed limit of the 3-point
function for the SGWB density contrast. We determine
how such squeezed limit depends on the scale dependence
of the spectrum of primordial scalar fluctuations, on the
momentum dependence of the background SGWB distri-
bution, and on the time, scale, and direction dependence of
the scalar transfer functions connecting primordial to late-
time adiabatic scalar fluctuations.
The paper is organized as follows. In Sec. II we present

the computation and the formal solution of the Boltzmann
equation for GW propagation. In Sec. III we decompose the
formal solution in spherical harmonics, paralleling a treat-
ment that is familiar in the study of CMB perturbations. In
Sec. IV we compute the angular power spectrum and
bispectrum of the SGWB perturbations. In Sec. V we
review one physical mechanism that can result in a sizeable
cosmological SGWB with some degree of anisotropy. In
Sec. VI we study nonlinear effects on the squeezed
bispectrum. In Sec. VII we comment on the observability
of such anisotropies. These results are discussed and
summarized in Sec. VIII. The paper is concluded by three
Appendixes. Appendix A contains the details of the
computation of the anisotropies due to the large-scale
tensor perturbations. Appendix B provides some inter-
mediate steps on the computation of the GW bispectrum
induced by tensor modes. Finally, Appendix C presents an
immediate connection between our formal solutions and
the CMB results obtained in the case of initial thermal state.
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Part of the results contained in the present work were
also summarized in [32].

II. BOLTZMANN EQUATION FOR
GRAVITATIONAL WAVES

We consider first-order perturbations around a
Friedmann-Lemaitre-Robertson-Walker (FLRW) back-
ground in the Poisson gauge

ds2 ¼ a2ðηÞ½−e2Φdη2 þ ðe−2Ψδij þ χijÞdxidxj�; ð2:1Þ

where aðηÞ is the scale factor as a function of the conformal
time η. Φ and Ψ are scalar perturbations while χij represent
the transverse-traceless tensor perturbations. We neglect
linear vector modes since they are not produced at first
order in standard mechanisms for the generation of cos-
mological perturbations (as scalar field inflation), and we
consider tensor modes at linearized order.
Given the statistical nature of the GW we can define a

distribution function of gravitons as f ¼ fðxμ; pμÞ, which
is a function of their position xμ and momentum
pμ ¼ dxμ=dλ, where λ is an affine parameter along the
GW trajectory. As we will see, observables as number
density, spectral energy density, and flux (directions) can
be derived from the distribution function. The graviton
distribution function obeys the Boltzmann equation

L½f� ¼ C½fðλÞ� þ I ½fðλÞ�; ð2:2Þ

where L≡ d=dλ is the Liouville term, while C and I
account, respectively, for the collision of GWs along their
path, and for their emissivity from cosmological and
astrophysical sources [15]. The collision among GWs
affects the distribution at higher orders (in an expansion
series in the gravitational strength 1=MP, where MP is the
Planck mass) with respect to the ones we are considering,
and they can be disregarded in our analysis (see [33] and
references therein for a discussion of collisional effects
involving gravitons). The emissivity can be due to astro-
physical processes (such as black hole merging) in the
relatively late universe, as well as cosmological processes,
such as inflation or phase transitions. In this work we are
only interested in the stochastic GW background of
cosmological origin, so we treat the emissivity term as
an initial condition on the GW distribution. This leads us to
study the free Boltzmann equation df=dη ¼ 0 in the
perturbed universe

df
dη

¼ ∂f
∂η þ

∂f
∂xi

dxi

dη
þ ∂f
∂q

dq
dη

þ ∂f
∂ni

dni

dη
¼ 0; ð2:3Þ

where n̂≡ p̂ is the GW direction of motion, and where we
have used the comoving momentum q≡ jp⃗ja (as opposed
to the physical one, used in [15,34]). This simplifies the
equations by factorizing out the universe expansion.

The first two terms in (2.3) encode free streaming, that
is the propagation of perturbations on all scales. At higher
order this term also includes gravitational time delay effects.
The third term causes the red-shifting of gravitons, includ-
ing the Sachs-Wolfe, integrated Sachs-Wolfe, and Rees-
Sciama effects. The fourth term vanishes to first order, and
describes the effect of gravitational lensing. We shall refer
to these terms as the free-streaming, redshift, and lensing
terms, respectively, as customarily done in CMB physics.
Keeping only the terms up to first order in the perturba-

tions, Eq. (2.3) gives

∂f
∂η þ ni

∂f
∂xi þ

�∂Ψ
∂η − ni

∂Φ
∂xi þ

1

2
ninj

∂χij
∂η

�
q
∂f
∂q ¼ 0;

ð2:4Þ

where we have followed the standard procedure developed
for the CMB in [34,35]. The distribution function f can be
expanded as

fðη; xi; q; niÞ ¼ f̄ðqÞ þ fð1Þðη; xi; q; niÞ þ…:

≡ f̄ðqÞ − q
∂f̄
∂qΓðη; x

i; q; niÞ þ…:; ð2:5Þ

where the dominant, homogeneous, and isotropic contri-
bution f̄ðqÞ solves the zeroth-order Boltzmann equation.
The function fð1Þðη; xi; q; niÞ is the solution of the first-
order equation, and the ellipses denote the higher-order
solutions in a perturbative expansion. In this expression we
have parametrized the first-order solution in terms of the
function Γ, so to simplify the first-order Boltzmann
equation [15]. For a thermal distribution with temperature
T, one finds Γ ¼ δT=T. This is particularly the case for the
CMB, for which, due to the thermalization, the temperature
anisotropies are frequency independent up to second order
in the perturbations. For gravitons, as we already men-
tioned, the collisional term is extremely small, and, for a
generic production mechanism, Γ generically retains an
order one dependence on frequency (as we show below,
also for the GW case the propagation effects induce
frequency-independent perturbations at linear order).
The zeroth-order homogeneous Boltzmann equation

simply reads ∂f̄=∂η ¼ 0, and it is solved by any distribu-
tion that is a function only of the comoving momentum q,
namely f ¼ f̄ðqÞ. In our approach this solution is simply
given as the homogeneous part of the initial condition. As a
consequence, the physical momentum of the individual
gravitons redshifts proportionally to 1=a, and the physical
graviton number density n ∝

R
d3pf̄ðqÞ is diluted as a−3 as

the universe expands. This is also the case for CMB
photons, whose distribution function f̄CMB ¼ ðep=T − 1Þ−1
is only controlled by the ratio p=T ∝ ap ¼ q, where T is
the temperature of the CMB bath. We see that these
rescalings with a are a consequence of the free particle
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propagation in the expanding FLRW background, and they
do not rely on the distribution being thermal.
As anticipated, from the graviton distribution function,

evaluated at the present time η0, we can compute the
SGWB energy density

ρGWðη0; x⃗Þ ¼
1

a40

Z
d3qqfðη0; x⃗; q; n̂Þ

≡ ρcrit;0

Z
d ln qΩGWðx⃗; qÞ; ð2:6Þ

where we have introduced the spectral energy density
ΩGW and the critical density ρcrit ¼ 3H2M2

p. Here H ≡
ð1=a2Þda=dη is the Hubble rate. Following standard con-
ventions, the suffix 0 denotes a quantity evaluated at the
present time.
Contrary to most of the studies of the SGWB, that

assume a homogeneous ΩGW, in our case the GW energy
density depends on space. We denote the homogeneous
component of ΩGW as

Ω̄GWðqÞ≡ 4π

ρcrit;0

�
q
a0

�
4

f̄ðqÞ: ð2:7Þ

For the full spectral energy density, we define

ΩGW ≡ 1

4π

Z
d2n̂ωGWðx⃗; q; n̂Þ; ð2:8Þ

where ωGWðx⃗; q; n̂Þ≡ q4=ða4ρcritÞfðx⃗; q; n̂Þ, and we intro-
duce the SGWB density contrast

δGW ≡ ωGWðx⃗; q; n̂Þ − Ω̄GWðqÞ
Ω̄GWðqÞ

¼
�
4 −

∂ ln Ω̄GWðqÞ
∂ ln q

�
Γðη0; x⃗; q; n̂Þ: ð2:9Þ

In terms of the function Γ, the first-order Boltzmann
equation reads [15]

∂Γ
∂η þ ni

∂Γ
∂xi ¼ Sðη; xi; niÞ; ð2:10Þ

where

Sðη; xi; niÞ ¼ ∂Ψ
∂η − ni

∂Φ
∂xi −

1

2
ninj

∂χij
∂η

is the source function which includes the physical effects
due to cosmological scalar and tensor inhomogeneities. We
note that the source is q independent (thus showing that the
anisotropies arising at first order from propagation effects
are frequency independent, as we anticipated).

To solve this equation, it is convenient to Fourier
transform with respect to spatial coordinates,

Γ≡
Z

d3k
ð2πÞ3 e

ik⃗·x⃗Γðη; k⃗; q; n̂Þ; ð2:11Þ

and analogously for the other variables (we use the same
notation for a field and for its Fourier transform, as the
context always clarifies which object we are referring to).
This leads to

Γ0 þ ikμΓ ¼ Sðη; k⃗; n̂Þ; ð2:12Þ

where from now on prime denotes a derivative with respect
to conformal time, and where we denote by

μ≡ k̂ · n̂; ð2:13Þ

the cosine of the angle between the Fourier variable k⃗ and
the direction of motion n̂ of the GW. In Fourier space the
source term reads

S ¼ Ψ0 − ikμΦ −
1

2
ninjχ0ij: ð2:14Þ

With this information in mind, Eq. (2.12) is readily
integrated to give

Γðη; k⃗; q; n̂Þ ¼ eikμðηin−ηÞΓðηin; k⃗; q; n̂Þ

þ
Z

η

ηin

dη0eikμðη0−ηÞ
�
dΨðη0; k⃗Þ

dη0
− ikμΦðη0; k⃗Þ

−
1

2
ninj

∂χijðη0; k⃗Þ
∂η0

�
: ð2:15Þ

We integrate the second term in the second line by parts,
and obtain

Γðη; k⃗; q; n̂Þ
¼ eikμðηin−ηÞ½Γðηin; k⃗; q; n̂Þ þΦðηin; k⃗Þ� −Φðη; k⃗Þ

þ
Z

η

ηin

dη0eikμðη0−ηÞ
�
d½Ψðη0; k⃗Þ þΦðη0; k⃗Þ�

dη0
− ikμΦðη0; k⃗Þ

−
1

2
ninj

∂χ̂ijðη0; k⃗Þ
∂η0

�
; ð2:16Þ

with the last two terms in the first line being the boundary
terms of this integration. In the following section, we
decompose the n̂ dependence of the solution (representing
the arrival direction of the GW on our sky) in spherical
harmonics. As we are not interested in the monopole term,
we can disregard the −Φðη; k⃗Þ contribution to the solution,
and write
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Γðη; k⃗; q; n̂Þ≡
Z

η

ηin

dη0eikμðη0−ηÞ

×

�
½Γðη0; k⃗; q; n̂Þ þΦðη0; k⃗Þ�δðη0 − ηinÞ

þ ∂½Ψðη0; k⃗Þ þΦðη0; k⃗Þ�
∂η0 −

1

2
ninj

∂χ̂ijðη0; k⃗Þ
∂η0

�
:

ð2:17Þ

The first term, which was disregarded in [15], carries the
“memory” of the initial conditions. Due to this term, the
GW energy density anisotropies are generically dependent
on the frequency q. We discuss an example of this fact in
Sec. V, where we study the SGWB produced in axion
inflation.
Generally, this term has also a dependence on n̂. This

implies that the solution has a dependence on the direction
n̂, which is more general than the one arising from the
projection of k⃗ on the line of sight n̂. [Indeed, the remaining
terms in Eq. (2.17) depend on n̂ only through the μ≡ k̂ · n̂
combination. Thanks to this fact, they result in angular
correlators that are statistically isotropic (as we show in the
next two sections).] On the other hand, the angular
dependence present in the first term of (2.17) could result
in statistically anisotropic correlators (specifically, 2-point

and 3-point correlators) that have a more general depend-
ence on the multipoles coefficients li and mi than
Eqs. (4.3). This would indicate an overall anisotropy of
the mechanism responsible for the GW across the entire
universe, and, ultimately, a departure from an exact FLRW
geometry. While we believe that this can be an interesting
topic for future exploration, the present work focuses on the
statistically isotropic case, and we assume an initial
condition of the form Γin ¼ Γðηin; k⃗; qÞ, which guarantees
such a condition.
In the case of gravitational wave backgrounds, what can

be directly observed with laser interferometers is the
(incoherent) superposition of the signal coming from
directions over the whole sky under a certain projection
through the response function [7]. However the quantity Γ
is related to fluctuations of the flux or intensity of gravitons
(in analogy with the flux of photons in CMB observations),
and it is proportional to the square of the signal. Making use
of the map-making algorithm, this is measurable from laser
interferometers, but it is not a direct observable. Ways to
understand how to measure this observable with interfer-
ometers are under development.

III. SPHERICAL HARMONICS DECOMPOSITION

We separate the solution (2.17) in three terms

Γðη; k⃗; q; n̂Þ ¼ ΓIðη; k⃗; q; n̂Þ þ ΓSðη; k⃗; n̂Þ þ ΓTðη; k⃗; n̂Þ; ð3:1Þ

where I, S, and T stand for initial, scalar, and tensor sourced terms respectively and they are given by

ΓIðη; k⃗; q; n̂Þ ¼ eikμðηin−ηÞΓðηin; k⃗; qÞ;

ΓSðη; k⃗; n̂Þ ¼
Z

η

ηin

dη0eikμðη0−ηÞ
�
Φðη0; k⃗Þδðη0 − ηinÞ þ

∂½Ψðη0; k⃗Þ þΦðη0; k⃗Þ�
∂η0

�
;

ΓTðη; k⃗; n̂Þ ¼ −
ninj

2

Z
η

ηin

dη0eikμðη0−ηÞ
∂χ̂ijðη0; k⃗Þ

∂η0 : ð3:2Þ

Similarly to what is usually done for the CMB, in order to compute the angular power spectrum, in an all-sky analysis we
decompose the fluctuations using spin-0 or spin-2 spherical harmonics. Since Γ is a scalar, we can express it as

Γðn̂Þ ¼
X
l

Xl
m¼−l

ΓlmYlmðn̂Þ; inverted by Γlm ¼
Z

d2nΓðn̂ÞY�
lmðn̂Þ; ð3:3Þ

where we recall that n̂ is the direction of motion of the GWs. More specifically,

Γlm ¼
Z

d2nY�
lmðn̂Þ

Z
d3k
ð2πÞ3 e

ik⃗·x⃗½ΓIðη; k⃗; q; n̂Þ þ ΓSðη; k⃗; n̂Þ þ ΓTðη; k⃗; n̂Þ�

≡ Γlm;I þ Γlm;S þ Γlm;T: ð3:4Þ
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A. Initial condition term and q-dependent anisotropies

Let us first evaluate the initial condition term

Γlm;I ¼
Z

d3k
ð2πÞ3 e

ik⃗·x⃗0Γðηin; k⃗;qÞ
Z

d2nY�
lmðn̂Þe−ikðη0−ηinÞk̂·n̂:

ð3:5Þ

Following the standard treatment for CMB anisotropies
[34], we make use of the identity

e−ik·y ¼
X
l

ð−iÞlð2lþ 1ÞjlðkyÞPlðk̂ · ŷÞ

¼ 4π
X
l

Xl
m¼−l

ð−iÞljlðkyÞYlmðk̂ÞY�
lmðŷÞ ð3:6Þ

(where jl and Pl are, respectively, spherical Bessel
functions and Legendre polynomial) so to obtain

Γlm;I ¼ 4πð−iÞl
Z

d3k
ð2πÞ3 e

ik⃗·x⃗0

× Γðηin; k⃗; qÞY�
lmðk̂Þjlðkðη0 − ηinÞÞ: ð3:7Þ

Here x⃗0 denotes our location (that can be set to the origin),
η0 denotes the present time, and ηin the initial time. Once
again we stress the peculiar property of the initial condition,
namely its dependence on the frequency q. In Sec. IV we
discuss how this imprints the SGWB angular spectrum.

B. Scalar sourced term

A second source of anisotropy is due to the GW
propagation in the large-scale scalar perturbations of the
universe (the wave number of these perturbations k is many
orders of magnitude smaller than the GW frequency q, and
the GW acts as a probe of this large-scale background). As
long as the scalar perturbation is in the linear regime (which
is the case for the large-scale modes that leave an impact on
the large-scale anisotropies of our interest), we can express
it [34] as a transfer function (a deterministic function that
encodes the time dependence of the perturbations) times a
stochastic variable ζ. This assumes the absence of iso-
curvature modes, and, in particular, of anisotropic stresses,
as for example those due to the relic neutrinos. This also
assumes that the statistical properties of ζ have been set
well before the propagation stage that we are considering
(for instance during inflation, or during some early phase
transition). Therefore, the scalar perturbations are

Φðη; k⃗Þ ¼ TΦðη; kÞζðk⃗Þ; Ψðη; k⃗Þ ¼ TΨðη; kÞζðk⃗Þ:
ð3:8Þ

Under the above assumptions, TΦðη; kÞ ¼ TΨðη; kÞ.
However, we keep these two terms as distinct in our
intermediate computations, so that the present analysis

can be most easily generalized, if one wishes to introduce
more general sources.
With this in mind, the scalar sourced term becomes

ΓSðη0; k⃗; n̂Þ ¼
Z

η0

ηin

dη0eikμðη0−η0Þ
�
TΦðη0; kÞδðη0 − ηinÞ

þ ∂½TΨðη0; kÞ þ TΦðη0; kÞ�
∂η0

�
ζðk⃗Þ

≡
Z

η0

ηin

dη0e−ikμðη0−η0ÞT Sðη0; kÞζðk⃗Þ; ð3:9Þ

and we note that we are assuming a single adiabatic mode
[i.e., ζðk⃗Þ is the operator associated with the conserved
curvature perturbation at superhorizon scales]. Proceeding
as above,

Γlm;S ¼ 4πð−iÞl
Z

d3k
ð2πÞ3 e

ik⃗·x⃗0ζðk⃗ÞY�
lmðk̂Þ

×

�
TΦðηin; kÞjlðkðη0 − ηinÞÞ

þ
Z

η0

ηin

dη0
∂½TΨðη0; kÞ þ TΦðη0; kÞ�

∂η0 jlðkðη0 − η0ÞÞ
�
:

ð3:10Þ

As we can see, also the SGWB, feels, similarly to the CMB,
a Sachs-Wolfe and integrated Sachs-Wolfe effect, which are
represented by the first and the second term in (3.10),
respectively.

C. Tensor sourced term

Finally, the third contribution Γlm;T is due to the GW
propagation in the large-scale tensor modes

Γlm;T ¼ −
Z

d2nY�
lmðn̂Þ

Z
d3k
ð2πÞ3 e

ik⃗·x⃗0
ninj

2

×
Z

η

ηin

dη0eikμðη0−η0Þ
∂χijðη0; k⃗Þ

∂η0 : ð3:11Þ

To evaluate such term we decompose the tensor modes in
right- and left-handed (respectively λ ¼ �2) circular polar-
izations (see e.g., [36]),

χij ≡
X
λ¼�2

eij;λðk̂Þχðη; kÞξλðkiÞ: ð3:12Þ

The three factors involved in each term are, respectively,
the tensor circular polarization operator, the tensor mode
function (equal for the two polarizations), and the stochas-
tic variable for that tensor polarization (that is the analog of
ζ we discussed in the scalar case).
Inserting this decomposition in Eq. (3.11), a lengthy

algebra, that we report in Appendix A, leads to
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Γlm;T ¼ πð−iÞl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s Z
d3k
ð2πÞ3 e

ik⃗·x⃗0
X
λ¼�2

−λY
�
lmðΩkÞξλðk⃗Þ

Z
η0

ηin

dηχ0ðη; kÞ jlðkðη0 − ηÞÞ
k2ðη0 − ηÞ2 ; ð3:13Þ

which is formally analogous to Eq. (3.10), with the product ζ̂Y�
lm replaced by the combination

P
λ¼�2 ξ̂λðk⃗Þ−λY�

lmðΩkÞ,
involving the spin-2 spherical harmonics, and with the scalar transfer function replaced by the tensor one.

D. Summary of the three contributions

The results derived in the three previous subsections can be written in the (slightly) more compact form

Γlm;IðqÞ ¼ 4πð−iÞl
Z

d3k
ð2πÞ3 e

ik⃗·x⃗0Γðηin; k⃗; qÞY�
lmðk̂Þjlðkðη0 − ηinÞÞ;

Γlm;S ¼ 4πð−iÞl
Z

d3k
ð2πÞ3 e

ik⃗·x⃗0ζðk⃗ÞY�
lmðk̂ÞT S

lðk; η0; ηinÞ;

Γlm;T ¼ 4πð−iÞl
Z

d3k
ð2πÞ3 e

ik⃗·x⃗0
X
λ¼�2

−λY
�
lmðΩkÞξλðk⃗ÞT T

lðk; η0; ηinÞ; ð3:14Þ

where we have introduced the linear transfer function T XðzÞ
l , with X ¼ S, T which represents the time evolution of the

graviton fluctuations originated from the primordial perturbation

T S
lðk; η0; ηinÞ≡ TΦðηin; kÞjlðkðη0 − ηinÞÞ þ

Z
η0

ηin

dη0
∂½TΨðη; kÞ þ TΦðη; kÞ�

∂η jlðkðη − ηinÞÞ;

T T
lðk; η0; ηinÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
1

4

Z
η0

ηin

dη
∂χðη; kÞ

∂η
jlðkðη0 − ηÞÞ
k2ðη0 − ηÞ2 : ð3:15Þ

IV. CORRELATORS OF GW ANISOTROPIES AND
SGWB NON-GAUSSIANITY

We now compute the 2-point hΓlmΓ�
l0m0 i and the 3-point

hΓl1m1
Γl2m2

Γl3m3
i angular correlators of the solutions

(3.14). The statistical operators entering in these solutions
are the four momentum-dependent quantities Γðηin; k⃗; qÞ,
ζðk⃗Þ, ξRðk⃗Þ, and ξLðk⃗Þ, while the other terms encode
deterministic effects such has the time evolution of the
large-scale modes (in the linearized theory of the cosmo-
logical perturbations) and the projection of the GW
anisotropies in the harmonic space. In this study, we

assume that the stochastic variables are nearly Gaussian,
with the 2-point functions

hΓðηin; k⃗; qÞΓ�ðηin; k⃗0; qÞi ¼
2π2

k3
PIðq; kÞð2πÞ3δðk⃗ − k⃗0Þ;

hζðk⃗Þζ�ðk⃗0Þi ¼ 2π2

k3
PζðkÞð2πÞ3δðk⃗ − k⃗0Þ;

hξλðk⃗Þξ�λ0 ðk⃗0Þi ¼
2π2

k3
PλðkÞδλ;λ0 ð2πÞ3δðk⃗ − k⃗0Þ;

ð4:1Þ
and a subdominant 3-point component

hΓðηin; k⃗; qÞΓ�ðηin; k⃗0; qÞΓ�ðηin; k⃗00; qÞi ¼ BIðq; k; k0; k00Þð2πÞ3δðk⃗þ k⃗0 þ k⃗00Þ
hζðk⃗Þζðk⃗0Þζðk⃗00Þi ¼ Bζðk; k0; k00Þð2πÞ3δðk⃗þ k⃗0 þ k⃗00Þ

hξλðk⃗Þξλ0 ðk⃗0Þξλ00 ðk⃗00Þi ¼ Bλðk⃗; k⃗0; k⃗00Þδλ;λ0δλ;λ00 ð2πÞ3δðk⃗þ k⃗0 þ k⃗00Þ: ð4:2Þ

The assumption of nearly Gaussian modes is experimen-
tally verified for the large-scale perturbations of ζ and of ξλ,
as obtained from the CMB data [37]. We assume that this is
the case also for the initial condition term.
The expressions (4.1) and (4.2) can be readily used

to compute the angular correlators of the solutions in

(3.14). Moreover, for simplicity of exposition, we have
here assumed that the various terms are not cross-
correlated. These result in separate sets of correlators
for the three terms in (3.14). This assumption can be
easily relaxed, and in fact, we did so in [25] where we
studied the anisotropic distribution of the GW originated
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in models with primordial black holes, as we review
in Sec. V.
The computations performed so far assume statistical

isotropy (recall the discussion at the end of Sec. II).

Correspondingly, when we combine (4.1) and (4.2) with
(3.14) we obtain angular correlators with well specific
dependence on the multipole indices. Specifically, the two
point correlators have the dependence

hΓlmΓ�
l0m0 i≡ δll0δmm0C̃l; hΓl1m1

Γl2m2
Γl3m3

i≡
�
l1 l2 l3

m1 mþ 2 m3

�
b̃ll0l00 ; ð4:3Þ

while, under the above assumption, the angular power spectrum and the reduced bispectrum consists of the three separate
contributions

C̃l ¼ C̃l;IðqÞ þ C̃l;S þ C̃l;T ; b̃l1l2l3
¼ b̃l1l2l3;IðqÞ þ b̃l1l2l3;S þ b̃l1l2l3;T : ð4:4Þ

We recall that the form of the bispectrum factorizes the Wigner-3j symbols [38], which are nonvanishing only provided thatP
i mi ¼ 0 and that the three li satisfy the triangular inequalities.
In the following we provide the explicit expression for the various contributions to the power spectrum and the reduced

bispectrum.

A. Angular power spectrum of GW energy density

We start with the computation of the two-point function of the initial condition term. From the first of (3.14) we can write

hΓlm;IðqÞΓ�
l0m0;IðqÞi ¼ ð4πÞ2ð−iÞl−l0

Z
d3k
ð2πÞ3 e

ik⃗·x⃗0

Z
d3k0

ð2πÞ3 e
−ik⃗0·x⃗0hΓðηin; k⃗; qÞΓ�ðηin; k⃗0; qÞi

× Y�
lmðk̂ÞYl0m0 ðk̂0Þjlðkðη0 − ηinÞÞjl0 ðk0ðη0 − ηinÞÞ: ð4:5Þ

The correlator of the initial condition term is then given by the first of (4.1). Using this, and the orthonormality condition of
the spherical harmonics,

R
d2n̂sYlmsY�

l0m0 ¼ δll0δmm0 , leads to

hΓlm;IðqÞΓ�
l0m0;IðqÞi ¼ δll0δmm04π

Z
dk
k
½jlðkðη0 − ηinÞÞ�2PIðq; kÞ; ð4:6Þ

which indeed is of the form dictated by statistical isotropy.
The other two terms are obtained analogously. Altogether,
we find

C̃l;IðqÞ ¼ 4π

Z
dk
k
½jlðkðη0 − ηinÞÞ�2PIðq; kÞ;

C̃l;S ¼ 4π

Z
dk
k
T ðSÞ2

l ðk; η0; ηinÞPζðkÞ;

C̃l;T ¼ 4π

Z
dk
k
T ðTÞ2

l ðk; η0; ηinÞ
X
λ¼�2

PλðkÞ: ð4:7Þ

We know from the CMB that the large-scale tensor modes
have a power smaller than the scalar ones. At large scale,
the scalar contribution is dominated by the term propor-
tional to the initial value ofΦ in T ð0Þ

l , which is the analog of
the SW contribution for the CMB. The large-scale modes
that we are considering reentered the horizon during matter
domination. For these modes, ignoring the late time dark
energy domination, TΦ ¼ TΨ ¼ 3=5 [34]. So, for scale
invariant power spectra,

C̃l ≃ C̃l;IðqÞ þ C̃l;S ≃
2π

lðlþ 1Þ
�
PIðqÞ þ

�
3

5

�
2

Pζ

�
:

ð4:8Þ

The second term can be compared to the SW contribution
to the CMB anisotropies. In that case, the final temperature
anisotropy is 1=3 times the scalar perturbation at the last
scattering surface, while Φ at that moment decreased by a
factor 9=10 in the transition from radiation to matter
domination [34]. With this in mind, the second term in
(4.8) leads to CSW

l ¼ ð3=10Þ2C̃l;S, in agreement with the
CMB literature. On the other hand, if the two contributions
are correlated, as it would be the case for adiabatic initial
condition for ΓI, then both terms in (4.8) contribute to the
SW effect for the SGWB.

B. Angular bispectrum of GW energy density

The characterization of the non-Gaussian properties of the
SGWB is a potential tool to discriminate whether a SGWB
has a primordial or astrophysical origin. The primoridal
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3-point function of the GW field, hh3i, is unobservable, due
to the decoherence of the associated phase (because of the
propagation, and the finite duration of the measurement
[23,24]), with, possibly, the exception of very specific shapes
[30,39]. It is more convenient to consider the non-
Gaussianity associated with the GW energy density angular

distribution, which is not affected by this problem [25].
This gives rise to the bispectra in (4.4), which we evalu-
ate now.
As we did for the power spectrum, also in this case we

start from the initial condition term. Combining the first of
(3.14) and the first of (4.2) leads to

	Y3
i¼1

Γlimi;IðqÞ



¼
Y3
i¼1

�
4πð−iÞli

Z
d3ki
ð2πÞ3 Y

�
limi

ðk̂iÞjliðkiðη0 − ηinÞÞ
�
BIðq; k1; k2; k3Þð2πÞ3δð3Þðk⃗1 þ k⃗2 þ k⃗3Þ: ð4:9Þ

We then use the representation of the Dirac δ function,

δð3Þðk⃗1 þ k⃗2 þ k⃗3Þ ¼
Z

d3y
ð2πÞ3 e

iðk⃗1þk⃗2þk⃗3Þ·y⃗

¼
Z

∞

0

dyy2
Z

dΩy

Y3
i¼1

�
2
X
LiMi

iLijLi
ðkiyÞY�

LiMi
ðΩyÞYLiMi

ðk̂iÞ
�
; ð4:10Þ

and the orthonormality of the spherical harmonics, to arrive at

	Y3
i¼1

Γlimi;IðqÞ



¼ Gm1m2m3

l1l2l3

Z
∞

0

dr r2
Y3
i¼1

�
2

π

Z
dkik2i jliðkiðη0 − ηinÞÞjli

ðkirÞ
�
BIðq; k; k0; k00Þ; ð4:11Þ

where we have introduced the Gaunt integrals

Gm1m2m3

l1l2l3
≡

Z
d2n̂Yl1m1

ðn̂ÞYl2m2
ðn̂ÞYl3m3

ðn̂Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r �
l1 l2 l3

0 0 0

��
l1 l2 l3

m1 m2 m3

�
: ð4:12Þ

We remark that also the bispectrum from the initial condition is also generally an Oð1Þ dependence on the GW frequency.
An analogous computation leads to the contribution from the scalar modes

	Y3
i¼1

Γlimi;S



¼ Gm1m2m3

l1l2l3

Z
∞

0

drr2
Y3
i¼1

�
2

π

Z
dkik2i T

S
li
ðki; η0; ηinÞjliðkirÞ

�
Bζðk; k0; k00Þ: ð4:13Þ

For the tensor sourced contribution we have

	Y3
i¼1

Γlimi;T



¼

X
λ¼�2

Y3
i¼1

�
4πð−iÞli

Z
k2i dki
ð2πÞ3 T

T
l;iðki; η0; ηinÞ

Z
dΩki−λY

�
limi

ðΩkiÞ
�	Y3

i¼1

ξλðk⃗iÞ


: ð4:14Þ

Following [40], in Appendix B we show that also this contribution can be cast in a similar form to the previous two terms:

	Y3
i¼1

Γlimi;T



¼ Gm1m2m3

l1l2l3

�Y3
i¼1

4πð−iÞli
Z

k2i dki
ð2πÞ3 T

T
l;iðki; η0; ηinÞ

�X
λ¼�2

F̃ λ
l1l2l3ðk1; k2; k3Þ; ð4:15Þ

where

F̃ λ
l1l2l3ðk1; k2; k3Þ≡

ffiffiffiffiffiffi
4π

p �
l1 l2 l3

0 0 0

�−1 X
m1;m2;m3

�
l1 l2 l3

m1 m2 m3

��Y3
i¼1

Z
dΩki

−λY
�
limi

ðΩkiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2li þ 1

p
�
hξλðk⃗1Þξλðk⃗2Þξλðk⃗3Þi:

ð4:16Þ
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We remark once again that we have neglected for simplicity all the mixed scalar-tensor correlators.

C. Reduced bispectrum and estimation

The three contributions to the bispectrum found above have the correct form (4.3) as dictated by statistical isotropy. For
convenience, we collect here the explicit form of the reduced bispectra contributing to (4.4)

b̃l1l2l3;I ¼
Z

∞

0

dr r2
Y3
i¼1

�
2

π

Z
dkik2i jli

½kiðη0 − ηinÞ�jliðkirÞ
�
BIðq; k1; k2; k3Þ;

b̃l1l2l3;S ¼
Z

∞

0

dr r2
Y3
i¼1

�
2

π

Z
dkik2i T

S
li
ðki; η0; ηinÞjliðkirÞ

�
Bζðk; k0; k00Þ;

b̃l1l2l3;T ¼ 4

π2
X
λ¼�2

X
mi

�
l1 l2 l3

0 0 0

�−2
Gm1m2m3

l1l2l3

�Y3
i¼1

ð−iÞli
2li þ 1

Z
d3kiT T

l;iðkiÞ−λY�
limi

ðΩkiÞ
�

× δðk⃗þ k⃗0 þ k⃗00ÞBλðk⃗; k⃗0; k⃗00Þ: ð4:17Þ

To estimate the SGWB bispectrum, we consider only
the scalar source contribution B̃l1l2l3;S and we assume the
simplest small nonlinear coupling local ansatz for the
curvature perturbation

ζðx⃗Þ ¼ ζgðx⃗Þ þ
3

5
fNLζ2gðx⃗Þ; ð4:18Þ

where ζgðx⃗Þ denotes the linear Gaussian part of the
perturbation. With the local ansatz, the bispectrum of the
scalar perturbations assumes the form [41,42]

Bζðk1; k2; k3Þ

¼ 6

5
fNL

�
2π2

k31
Pζðk1Þ

2π2

k32
Pζðk2Þ þ 2 permutations

�
:

ð4:19Þ

We insert this in the second line of (4.17) and we assume a
matter transfer function TΦðη; kÞ ¼ TΨðη; kÞ ¼ 3=5gðηÞ
with the growth factor gðηÞ ¼ 1 and a scale invariant
spectrum for the primordial curvature fluctuations. We
can then integrate over one of the internal momenta ki,

2

π

Z
dk k2jlðkη0ÞjlðkrÞjl≫1 ¼

δðη0 − rÞ
η20

: ð4:20Þ

The relation (4.20) is exact if k ranges up to infinity,
which is not the case for the innermost momentum [as
the integral (4.20) is performed first, this will necessarily
be the momentum that we order to be the innermost one],
due to the triangular inequalities associated with the
bispectrum. The condition l ≫ 1 ensures that the support
of the integration occurs at sufficiently small k, so that
the relation (4.20) becomes exact at large l. The result
then allows us to immediately perform the integral over r.
We then find that the reduced bispectrum from the scalar

contribution, assuming that the SW is the dominant
contribution, is

b̃l1l2l3;S ¼
162

625
fNL

�
4π

Z
dk1
k1

j2l1ðk1η0ÞPζðk1Þ
�

×

�
4π

Z
dk2
k2

j2l2ðk2η0ÞPζðk2Þ
�

þ 2 permutations: ð4:21Þ

This result can also be written in terms of the 2-point
functions found in Eq. (4.7):

b̃l1l2l3;S ≃ 2fNL½C̃l1;SC̃l2;S þ C̃l1;SC̃l3;S þ C̃l2;SC̃l3;S�;
ð4:22Þ

which resembles the one for the CMB angular bispectrum
in the Sachs-Wolfe regime [41]. So, the SGWB bispectrum
is specified by the fNL parameter and the angular spectrum.
Also in this estimate we neglected a possible correlation
between the initial and scalar source contributions that
should be taken into account when, for instance, ΓI is
controlled by the adiabatic scalar perturbation (see [25] for
an example).

V. AN EXAMPLE: THE AXION-INFLATION CASE

The goal of this section is to understand under which
conditions the initial term ΓIðqÞ has a nontrivial q depend-
ence that distinguishes it from the other contributions to the
anisotropy. There are several mechanisms for the gener-
ation of a cosmological GW signal visible at interferometer
scales (see [8–10] for recent review). In this section we
focus on a specific mechanism: we consider the case where
an axion inflaton ϕ sources gauge fields, which in turn
generates a large GW background. In particular we con-
sider the specific evolution shown in Fig. 4 of [43], where
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the inflaton potential is chosen so to lead to a peak in the
GW signal at LISA frequencies, without overproducing
scalar perturbations and primordial black holes. The
amount of GWs sourced in this mechanism is controlled
by the parameter ξ≡ ð _ϕ=2fϕHÞ, where fϕ is the decay
constant of the axion inflaton. The present fractional energy
in GW, ΩGWðη0; qÞ, is related to the primordial GW power
spectrum Pλðηin; qÞ by

ΩGWðη0; qÞ ¼
3

128
Ωrad

X
λ

Pλðηin; qÞ

×

�
1

2

�
qeq
q

�
2

þ 4

9
ð

ffiffiffi
2

p
− 1Þ

�
: ð5:1Þ

This relation, taken from [10], interpolates between large
and small scales. Since we are interested in the modes with
q ≫ qeq, that entered the horizon during radiation domi-
nation, we consider only the second term in the square
bracket, and we find

ΩGWðη0; qÞ ¼ constant ×
X
λ

Pλðηin; qÞ; ð5:2Þ

and, as we will see, the constant term is not relevant for our
computation.
We are interested in the contribution from the initial

condition Γin. So we can set the long modes ζðk⃗Þ ¼
hλðk̂Þ ¼ 0 in this discussion. We therefore assume that
the value of the energy density that arrives to the location x⃗
from the direction n̂ is controlled by the parameter

ξ ¼ ξ̄þ δξðx⃗þ dn̂Þ: ð5:3Þ

In this relation, ξ is the value that this parameter had during
inflation at the location x⃗þ dn̂, where d is the distance
covered by the gravitons between the initial and the present
time (equal for all directions, since we are disregarding the
effect of the long scale modes ζ; we note that these modes
will contribute to the term ΓS, that we are not discussing in
this section). In writing this relation, we have assumed that
the parameter ξ is in turn controlled by a dynamical field
(the rolling axion, in the example of [43]), which results in
the background value ξ̄, and in the perturbation δξ.
We then generalize the relation (5.1) to

ωGWðη0; x⃗; q; n̂Þ ¼ constant ×
X
λ

Pλðq; ξðη0; x⃗; n̂ÞÞ; ð5:4Þ

which has the background value Ω̄GWðη0; qÞ ¼ constant ×P
λ Pλðq; ξ̄Þ. The constant factor drops in the ratio

4 −
∂ ln Ω̄GWðη0; qÞ

∂ ln q ¼ 4 −
∂ ln ½PλPλðq; ξ̄Þ�

∂ ln q ; ð5:5Þ

as well as in

δGWðη0; x⃗; q; n̂Þ ¼
P

Pλðq; ξðη0; x⃗; n̂ÞÞ −
P

Pλðq; ξ̄ÞP
Pλðq; ξ̄Þ

¼ ∂ ln ½Pλ lnPλðq; ξ̄Þ�
∂ξ̄ δξðx⃗þ dn̂Þ; ð5:6Þ

where we have expanded the GW primordial power
spectrum to linear order in δξ. In this way, the relation
(2.9) can be recast in the form

ΓIðη0; x⃗0; q; n̂Þ≡ F ðq; ξ̄Þδξðx⃗0 þ dn̂Þ; ð5:7Þ

with

F ðq; ξ̄Þ≡ 1

4 − nT

∂Pλ½lnPλðq; ξ̄Þ�
∂ξ̄ ;

nT ≡ ∂ ln ½PλPλðq; ξ̄Þ�
∂ ln q ; ð5:8Þ

where we have also made use of the standard definition of
the tensor spectral tilt nT .
The question of whether we have or have not spectral

distortion depends on whether the quantity F ðq; ξ̄Þ is or is
not q dependent. This provides an immediate criterion for
evaluating whether and how much the GW anisotropies
depend on frequency (as, in principle, one could imagine a
GW power spectrum for which the dependence on q of F
vanishes, or is extremely suppressed). This conclusion only
assumes that the primordial GW signal is a function of
some additional parameter ξ which has small spatial
inhomogeneities, and therefore it likely applies to several
other mechanisms.
We show in Fig. 1 the evolution of the function F

corresponding to the GW production shown in Fig. 4 of
[43]. We see that indeed this quantity presents a nontrivial

10�15 10�10 10�5 1 105
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FIG. 1. Quantity F as a function of the frequency f ¼ q=2π of
the GW signal for the model of axion inflation described in
the text.
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scale dependence, and therefore the correlators of the
anisotropies will be different at different frequencies.

VI. SQUEEZED LIMIT AND CONSISTENCY
RELATIONS OF THE SGWB

Nonlinear effects associated with the propagation of
interacting GWs in a nonlinear universe lead to non-
vanishing connected n-point functions even in absence of
intrinsic, primordial non-Gaussianity. In particular, the
squeezed limit of bispectra associated with GW observ-
ables should acquire a nonvanishing value, and satisfy
consistency relations that resemble Maldacena’s consis-
tency relations [44]. This is analogous to what happens for
CMB [45–47].
In this section we compute the squeezed limit of the

bispectrum for the graviton distribution function in the
case of adiabatic fluctuations. As in Sec. II, we write in
momentum space

ωGWðη; ki; q; njÞ ¼ ω̄GWðη; qÞ½1þ δGWðη; ki; q; niÞ�;
ð6:1Þ

where ω̄GWðη; qÞ is associated with the energy density of
the isotropic SGWB. This quantity depends on time η and
on the GW momentum q. Small anisotropies of the SGWB
are controlled by the quantity δGW given in Eq. (2.9). We
rewrite it here, expressing it in terms of the function f̄ðqÞ:

δGWðη; k⃗; q; n⃗Þ ¼ −
∂ ln f̄ðqÞ
∂ ln q ΓSðη; k⃗; q; n⃗Þ; ð6:2Þ

where recall that ΓS controls the fluctuations in the
distribution function (see the definitions in Sec. II). In this
section we focus on the contribution due to scalar fluctua-
tions. We assume there is no anisotropic stress, and that
scalar perturbations in Newtonian gauge satisfy the adia-
baticity condition:

Φðη; k⃗Þ ¼ Ψðη; k⃗Þ ¼ 3

5
gðηÞζðk⃗Þ; ð6:3Þ

where gðηÞ is a function mapping the superhorizon seed
[controlled by ζðk⃗Þ] to the scalar fluctuations at small scales
(see e.g., [48,49]). It is generally time dependent although it
is equal to unity in pure matter domination. Then the
contribution ΓS reads [see Eq. (3.9)]

ΓSðη; k⃗; n̂Þ ¼
3

5

Z
η

ηin

dη0e−ikμðη−η0Þ

×
�
δðη0 − ηinÞgðη0Þ þ

1

2
∂η0gðη0Þ

�
ζðk⃗Þ;

≡ TSðη; k; μÞζðk⃗Þ; ð6:4Þ

where μ ¼ n̂ · k̂ and TS is the definition for the scalar
transfer function we adopt here. In matter domination this
becomes

TS ¼
3

5
e−ikμðη−ηinÞ: ð6:5Þ

Notice that ΓS does not depend on q. Assembling the
definitions above, we can then write

δGWðη; k⃗; q; n⃗Þ ¼ −
∂ ln f̄ðqÞ
∂ ln q TSðη; k; μÞζðk⃗Þ: ð6:6Þ

Indicating with PΓ the power spectrum, we can write the
2-point correlators in momentum space as

hΓðη; k⃗1; q; n̂ÞΓðη; k⃗2; q; n̂Þi0 ¼
2π2

k31
PΓðη; k1; q; n̂Þ

¼ 2π2

k31
jTSðη; k1; μ1Þj2Pζðk1Þ;

ð6:7Þ

where a prime 0 corresponds to correlators understanding
the ð2πÞ3δðP k⃗iÞ factor. Then,

PΓðη; k; μÞ ¼
hΓSðη; k; μÞΓSðη; k0; μÞi0

2π2=k3

¼ jTSðη; k; μÞj2PζðkÞ; ð6:8Þ

PδGWðη; k; q; μÞ ¼
���� ∂ ln f̄ðqÞ∂ ln q TSðη; k; μÞ

����2PζðkÞ: ð6:9Þ

In matter domination, as we learned above, jTSj2 ¼ 9=25,
but in general jTSj2 can depend on η, k, n̂.
In what follows, we study how the 2-point correlation

functions of SGWB anisotropies, when evaluated at small
scales k, are modulated by the presence of a long-scale
mode ζL ≡ ζðk⃗LÞ, with jk⃗Lj ≪ jk⃗j. Such modulation indu-
ces a nonvanishing squeezed limit for the 3-point function
of δGW. The anisotropies δGW depend on various quantities,
ðη; k; q; μÞ, which can be sensitive in a different way to the
long mode. We use the systematic approach pionereed by
Weinberg [31] that unambiguously associates the effects of
a long mode with an appropriate coordinate transformation.
We shall closely follow the treatment of [46], which
develops the arguments of [31] for the case of CMB,
applying it to the SGWB (for similar approaches see
also [45,47]).

A. Long wavelength modes as
coordinate transformations

We discuss how to identify the effects of a long mode
with an appropriate coordinate transformation. We limit our
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attention to effects due to scalar fluctuations. The metric
including long-wavelength scalars in Poisson gauge is

ds2 ¼ a2ðηÞ½−ð1þ 2ΦLÞdη2 þ ð1 − 2ΨLÞδijdxidxj�:
ð6:10Þ

We assume that the long-scale mode depends on a momen-
tum k⃗L, with magnitude much smaller than that of the
momentum of the short-scale modes introduced in
Eq. (6.17), but with a certain direction, and we discuss
how the quantities ðη; k; q; μÞ, transform under a coordinate
redefinition adsorbing the long modes. We start by noticing
that the following coordinate transformation preserves the
Poisson gauge structure (ζL indicates the long mode of
curvature fluctuations at large scales, responsible for the
modulation effects):

η̂ ¼ ηþ ϵðηÞζL; ð6:11Þ

x̂i ¼ xið1 − λζLÞ; ð6:12Þ
with λ constant.After performing such gauge transformation,

Φ̂L ¼ ΦL − ϵ0ζL −HϵζL;

Ψ̂L ¼ ΨL − λζL þHϵζL; ð6:13Þ
we can “gauge away” the long wavelength scalar modes
making the gauge choice

ΦL ¼ ðϵ0 þHϵÞζL;
ΨL ¼ ðλ −HϵÞζL; ð6:14Þ

so that in the hat coordinates the metric is purely FRW with
no long-wavelength perturbations. As explained in [31,46],
in order to be consistent with the small k limit of Einstein
equations, we need to impose the conditions (in absence of
anisotropic stress)

λ ¼ 1;

ϵðηÞ ¼ 1

a2ðηÞ
Z

η

η⋆
dη0a2ðη0Þ; ð6:15Þ

where η� is some initial reference time. Equation (6.15)
immediately leads to the equality

ϵ0 ¼ −2Hϵþ 1: ð6:16Þ

After performing the coordinate redefinition (6.11),
(6.12), we can write a metric containing short-wavelength
scalar fluctuations in Poisson gauge “on top” of long
fluctuations:

ds2 ¼ a2ðη̂Þ½−ð1þ 2Φ̂SÞdη̂2 þ ð1 − 2Ψ̂SÞδijdx̂idx̂j�:
ð6:17Þ

In fact, such metric contains the long-scale modes within
the definition of the hat coordinates. We can then express
the perturbations in terms of the original coordinates
ðη; xiÞ using again relations (6.11), (6.12). Such operation
teach us how the short wavelength modes are modulated
by the long wavelength ones:

Φ̂S ¼ ΦS þΦL þ 2ΦSΦL þ ϵζL
∂ΦS

∂η − λζLxi
∂ΦS

∂xi ;
ð6:18Þ

Ψ̂S ¼ ΨS þ ΨL − 2ΨSΨL þ ϵζL
∂ΨS

∂η − λζLxi
∂ΨS

∂xi :
ð6:19Þ

Importantly, the short modes acquire a second-order
correction due to long modes. As we shall discuss in
what comes next, these nonlinear, higher-order correc-
tions modulate the 2-point function for short modes, and
lead to a nonvanishing squeezed limit for the 3-point
function.
As a concrete example, that we shall use in what follows,

we can consider the case of constant proportionality
between pressure and energy density, p ¼ wρ. Being in
this case aðηÞ ∝ η2=ð1þ3wÞ, H ¼ 2=½ηð1þ 3wÞ� we get

ϵðηÞζL ¼ 1þ 3w
5þ 3w

ηζL; ð6:20Þ

and

Hϵ ¼ 2

5þ 3w
; ð6:21Þ

which, for matter domination, gives Hϵ ¼ 2=5.
We also need to evaluate how the Fourier transform of a

function fðxiÞ changes under a rescaling of spatial coor-
dinates, as in Eq. (6.12). We find that if we apply a constant
rescaling of spatial coordinates

fðxiÞ → fðxið1 − λζLÞÞ ð6:22Þ

to a function f, then its Fourier transform, given by

fðxiÞ ¼
Z

d3k
ð2πÞ3 e

ik⃗ x⃗f̃ðkjÞ;

transforms as (at first order in a ζL expansion)

fðxið1 − λζLÞÞ ¼
Z

d3k
ð2πÞ3 e

ik⃗ x⃗ð1−λζLÞf̃ðkjÞ

¼
Z

d3k
ð2πÞ3 e

ik⃗ x⃗½ð1þ 3λζLÞf̃ðkjð1þ λζLÞÞ�:

ð6:23Þ
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This implies that up to first order in ζL, under the
coordinate transformation we are interested in, we have

f̃ðkjÞ → ð1þ 3λζLÞf̃ðkjð1þ λζLÞÞ ⇒ f̃ðkjÞ

→ f̃ðkjÞ þ 3λζLf̃ðkjÞ þ λζLkm
∂f̃ðkjÞ
∂km : ð6:24Þ

As a last step, we now investigate how to transform the
coordinates ðq; n̂iÞ that control the GW four-momentum.
At first order, neglecting tensors, the GW four-momentum
components are given by

P0 ¼ q
a2ðηÞ e

−Φ; Pi ¼ q
a2ðηÞ n

ieΨ: ð6:25Þ

We wish to express the previous quantities in terms of hat
coordinates, including the effects of the long modes. In
particular, we are interested in determining the quantities q̂
and n̂i that are contained into the GW four-momentum,
when it is expressed in terms of hat coordinates. We use the
fact that Pμ is a vector, transforming in the usual way under
coordinate transformations [in particular transformations
(6.11), (6.12)]. Using this fact, we find

q̂
a2ðη̂Þ ¼ ð1þ ϵ0ζLÞ

q
a2ðηÞ e

−ΦL ; ð6:26Þ

q̂
a2ðη̂Þ n̂

i ¼ ð1 − λζLÞ
q

a2ðηÞ n
ieΨL : ð6:27Þ

Condition (6.26) gives, at first order in the long-scale
modes,

q̂ ¼ a2ðη̂Þ
a2ðηÞ ð1þ ϵ0ζLÞð1 −ΦLÞq

¼ ð1þ 2HϵζL þ ϵ0ζL −ΦLÞq

¼
�
1þ

�
1 −

3

5
gðηÞ

�
ζL

�
q: ð6:28Þ

On the other hand, condition (6.27) gives

n̂i ¼ a2ðη̂Þ
a2ðηÞ

q
q̂
ð1 − λζLÞð1þ ΨLÞni

¼ ð1 − ϵ0ζL − λζL þ 2ΦLÞni

¼
�
1 − 2

�
1 −HϵðηÞ − 3

5
gðηÞ

�
ζL

�
ni: ð6:29Þ

These are the results that we need. It is convenient to write
more compact expressions as

q̂ ¼ ð1þ βqðηÞζLÞq;
n̂i ¼ ð1þ βnðηÞζLÞni; ð6:30Þ

with βq;n functions of time

βqðηÞ ¼ 1 −
3

5
gðηÞ;

βnðηÞ ¼ −2
�
1 −HϵðηÞ − 3

5
gðηÞ

�
: ð6:31Þ

In matter domination we find βq ¼ 2=5 and βn ¼ 0.

B. Coordinate transformations and the GW
distribution function

We now apply the previous results to the problem at
hand. We start by rewriting the GW energy density

ωGWðη; ki; q; niÞ ¼ ω̄GWðη; qÞ½1þ δGWðη; ki; q; niÞ�;
ð6:32Þ

where

ω̄GWðη; qÞ ¼
q4

a4ðηÞρcrit
f̄ðqÞ; ð6:33Þ

and

δGWðη; k⃗; q; niÞ ¼ −
∂ ln f̄ðqÞ
∂ ln q ΓSðη; k⃗; q; niÞ: ð6:34Þ

We now transform each contribution in the previous
formulas under the coordinate transformation discussed
in Sec. VI A. The background quantities ω̄GW and f̄ðqÞ
transform as

ω̄GWðη; qÞ ⇒ ω̄GWðη̂; q̂Þ ¼ ω̄GWðη; qÞ

×

�
1þ 4ðβq −HϵÞζL þ βq

∂ ln f̄ðqÞ
∂ ln q ζL

�
;

ð6:35Þ

where

∂ ln f̄ðqÞ
∂ ln q ⇒

∂ ln f̄ðq̂Þ
∂ ln q̂ ¼ ∂ ln f̄ðqÞ

∂ ln q þ βqðηÞ
∂2 ln f̄ðqÞ
∂ðln qÞ2 ζL:

ð6:36Þ

The quantity ΓS is mapped to

ΓSðη̂; k̂i; q̂; n̂iÞ ¼ ð1þ 3ζLÞΓSðηþ ϵðηÞζL; k⃗ð1þ ζLÞ;
ð1þ βqðηÞζLÞq; ð1þ βnðηÞζLÞniÞ; ð6:37Þ

that, expanded at linear order in ζL, becomes
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ΓSðη; ki; q; niÞ ⇒ ΓSðη̂; k̂i; q̂; n̂iÞ ¼ ð1þ 3ζLÞΓSðη; ki; q; niÞ

þ ∂ΓS

∂η ϵðηÞζL þ ki
∂ΓS

∂ki ζL þ βqðηÞ
∂ΓS

∂ ln q ζL þ βnðηÞnj
∂ΓS

∂nj ζL: ð6:38Þ

We now assemble the results obtained. The SGWB energy density, including anisotropies, is modulated by the long mode
ζL as

ωGWðη̂; k̂i; q̂; n̂iÞ ¼ ω̄GWðη; qÞ
�
1þ δGW þ

�
4βq − 4Hϵþ βq

∂ ln f̄ðqÞ
∂ ln q

�
ζL þ

�
3þ βqðηÞ

∂ ln q
∂ ln f̄ðqÞ

∂2 ln f̄ðqÞ
∂ðln qÞ2

�
ζLδGW

þ
�∂ lnΓ

∂η ϵðηÞ þ ki
∂ lnΓ
∂ki þ βnðηÞ

∂ lnΓ
∂ ln μ

�
ζLδGW

�
: ð6:39Þ

Equation (6.39) is the basic expression that we need: all
quantities on the right-hand side are evaluated in terms of
the original coordinates without the hat. Notice that even in
absence of intrinsic small-scale anisotropies, the GW
energy density is modulated by the long mode: a depend-
ence on ζL is indeed still present by setting δGW ¼ 0 in
Eq. (6.39). This is the effect studied by Alba and Malda-
cena [14]. For example, in pure matted domination, we
have βq ¼ Hϵ ¼ 2=5. Setting δGW ¼ 0, Eq. (6.39) simply
becomes

ω̂GWðη̂; k̂i; q̂; n̂iÞ ¼ ω̄GWðη; qÞ
�
1þ 2

5

∂ ln f̄ðqÞ
∂ ln q ζL

�
:

ð6:40Þ

In this case, the modulation of ωGW is then controlled by
the momentum dependence of the function f̄ðqÞ, associated

with the isotropic distribution function of the SGWB
energy density [14].

C. The squeezed limit of 3-point correlation functions

We now apply the general result of (6.39) to study how
correlation functions of small-scale GW anisotropies δGW
are influenced by the long mode. We start by studying how
2-point correlation functions are modulated by ζL; we
continue investigating the squeezed limit of the 3-point
correlation functions.
Using Eq. (6.39), we find the result1

hδ̂GWðk⃗1Þδ̂GWðk⃗2Þi0 ¼ ð1þMζLÞhδGWðk⃗1ÞδGWðk⃗2Þi0;
ð6:41Þ

where the modulating factor M reads

M ¼ 6þ 2βqðηÞ
∂ ln q

∂ ln f̄ðqÞ
∂2 ln f̄ðqÞ
∂ðln qÞ2 þ ϵðηÞ ∂ ln hΓSðk⃗1ÞΓSðk⃗2Þi0

∂η þ ki1
∂ ln hΓSðk⃗1ÞΓSðk⃗2Þi0

∂ki1 þ ki2
∂ ln hΓSðk⃗1ÞΓSðk⃗2Þi0

∂ki2
þ βqðηÞ

∂ ln hΓSðk⃗1ÞΓSðk⃗2Þi0
∂ ln q þ βnðηÞnj

∂ ln hΓSðk⃗1ÞΓSðk⃗2Þi0
∂nj : ð6:42Þ

Notice that the contributions in the first line of Eq. (6.39) that depend only on the long mode (without being weighted by
δGW) do not contribute to M. Therefore they do not modulate the short-mode 2-point function.
We now apply to the results derived above the definitions of δGW and Γ power spectra, Eqs. (6.8), (6.9). We find the

following expression for the modulation of the power spectrum due to a long mode:

Pδ̂GW
ðη; k; q; n̂; k⃗LÞ ¼

�
1þ 2

∂ lnPζ

∂ ln k ζk⃗L þ 2βqðηÞ
∂ ln q

∂ ln f̄ðqÞ
∂2 ln f̄ðqÞ
∂ðln qÞ2 ζðk⃗LÞ

þ
�
ϵðηÞ ∂ ln jTSj2

∂η þ ∂ ln jTSj2
∂ ln k þ βnðηÞ

∂ ln jTSj2
∂ ln μ

�
ζðk⃗LÞ

�
PδGWðη; k; q; n̂Þ: ð6:43Þ

1Each quantity is evaluated at the same value of η, q, ni; hence, we understand such dependence. Here we indicate with δ̂GW the
quantity that receives the long-mode modulation.
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All quantities inside the square brackets in the right-hand
side are again evaluated at the same values of η, n̂, k; hence
we understand this dependence. We find that the power
spectrum of δGW is modulated by the long mode ζðk⃗LÞ
through three (physically distinct) effects:
(1) A modulation due to the scale dependence of the

primordial curvature spectrum, as in Maldacena’s
consistency relation. This is contained in the first
line of Eq. (6.43), second term in the right-hand side.
(Notice that the contributions coming from deriva-
tives of the 1=k3 factor cancel out, as expected.)

(2) A contribution due to the momentum dependence of
the background distribution f̄ðqÞ. This is contained
in the first line of Eq. (6.43), third term in the right-
hand side. This is a close relative of the effect
pointed out by Alba and Maldacena [14], although
it is not exactly the same result because we find

contributions depending on second derivatives of the
function f̄ðqÞ.

(3) A contribution due to the time, scale, and direction
dependence of the transfer function of scalar modes.
This is contained in the second line of Eq. (6.43).

In the previous discussion we learned how the long mode
modulates the 2-point function. This effect is expected to
lead to a nonvanishing squeezed limit for the 3-point
function involving the anisotropies δGW. Indeed, expressing
a large scale limit of δGW in terms of ζ as

δ̂GWðη; ki3; q; niÞ ¼ −
∂ ln f̄ðqÞ
∂ ln q TSðη; ki3; μ3Þζðk⃗3Þ; ð6:44Þ

for a small jk⃗3j, we can write the schematic relation (all
δGW’s are evaluated at the same values of η, ni, q so we
understand their dependence)

lim
k⃗3→0

hδ̂GWðk⃗1Þδ̂GWðk⃗2Þδ̂GWðk⃗3Þi ¼ −
∂ ln f̄ðqÞ
∂ ln q TSðη; ki3; μ3Þhhδ̂GWðk⃗1Þδ̂GWðk⃗2Þiζðk⃗3Þi

¼ −
∂ ln f̄ðqÞ
∂ ln q TSðη; ki3; μ3ÞhhδGWðk⃗1ÞδGWðk⃗2Þið1þMζLÞζðk⃗3Þi

¼ −
∂ ln f̄ðqÞ
∂ ln q TSðη; ki3; μ3ÞMhhδGWðk⃗1ÞδGWðk⃗2ÞihζLζðk⃗3Þi; ð6:45Þ

where in the second line we used Eq. (6.41). This nonvanishing result gives the squeezed limit of the 3-point function for
δGW. We adopt the following definition2 for the nonlinear parameter fδGWNL :

lim
k⃗3→0

hδGWðk⃗1ÞδGWðk⃗2ÞδGWðk⃗3Þi ¼ fδGWNL

�
4π4

k31k
3
3

�
PδGWðk1ÞPζðk3Þ: ð6:46Þ

In our case, using the previous results, we find

fδGWNL ¼ −
∂ ln f̄ðqÞ
∂ ln q TSðη; k3; μ3Þ

�
2
∂ lnPζ

∂ ln k1 þ 2βqðηÞ
∂ ln q

∂ ln f̄ðqÞ
∂2 ln f̄ðqÞ
∂ðln qÞ2

þ ϵðηÞ ∂ ln jTSj2
∂η þ ∂ ln jTSj2

∂ ln k1 þ βnðηÞ
∂ ln jTSj2
∂ ln μ1

�
; ð6:47Þ

and we can apply to this result the very same considerations
made after Eq. (6.43).
The formula simplifies considerably in the case of pure

matter domination. In this case, TS ¼ 3=5, βq¼Hϵ¼2=5.
Then,

fδGWNL ¼ −
6

5

∂ ln f̄ðqÞ
∂ ln q

∂ lnPζ

∂ ln k1 −
12

25

∂2 ln f̄ðqÞ
∂ðln qÞ2 : ð6:48Þ

Recalling that f̄ðqÞ is related with the GW isotropic energy
density ΩGW by the relation

∂ ln f̄
∂ ln q ¼ ∂ lnΩGW

∂ ln q − 4; ð6:49Þ

the nonlinearity parameter fδGWNL can then be enhanced in
proximity to large values of second derivatives of ΩGW as a
function of the scale q.
As an illustrative toy model which demonstrates this

effect, we can consider a GW spectral density with the
shape of a broken power law. The following parametriza-
tion for the spectral energy changes slope at a scale q ¼ q⋆:

2We use Pζðk3Þ instead of PδGWðk3Þ in the next equation, in
order to simplify the overall coefficients in the equations that
come next. Recall that the definitions of Pζ and PδGW are related
by Eq. (6.9).
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ΩGWðqÞ ¼
Ω0

2

��
q
q⋆

�
α
�
tanh

�ð1 − q=q⋆Þ
κ0

�
þ 1

�

þ
�
q
q⋆

�
−β
�
tanh

�ðq=q⋆ − 1Þ
κ0

�
þ 1

��
ð6:50Þ

with α, β positive numbers, while the functions inside the
square brackets represent a regularization of twice the
Heaviside function (that is approached when sending
κ0 → 0). The function ΩGW has a large second derivative
in proximity of the scale q⋆ where the change of slope
occurs. The value of fδGWNL at q⋆ results (for a scale invariant
spectrum of ζ)

fδGWNL ¼ 3

25

αþ β

κ0
ð4 − ðαþ βÞκ0Þ: ð6:51Þ

Hence it can be enhanced taking small values of κ0. See
Fig. 2 for an illustration of this phenomenon, for a
representative choice of parameters.

VII. DETECTABILITY OF ANISOTROPIC GWB

Prospects for direct measurement of the isotropic and
anisotropic components of GWBs, both astrophysical and
cosmological, by ongoing interferometers like LIGO-
Virgo, and future space missions like LISA, DECIGO,
and BBO have been performed in the literature (see e.g.,
[50–55]). While present GW interferometers are quite far
from detecting the anisotropies of the SGWB since they are
characterized by a poor angular resolution (l ∼ 4–5) (see
e.g., [1] for an analysis by the LIGO-Virgo Collaboration,
and [56–62] using a map-making approach), future ground-
based interferometers like ET and Cosmic Explorer could
be sensitive to such a signal especially if it is characterized
by a large monopole amplitude. To our knowledge, a
detailed study for future ground-based interferometers is
still missing, but it is plausible that a better angular

resolution can be reached, just considering the longer
baseline and better sensitivity of such detectors.
On the other hand, for the next-generation of space

interferometers an analysis to quantify to which extent
anisotropies of the GWB can be probed has been carried
out in [55]. In these papers the strain sensitivity has been
quantified for each detectable multipole moment and maps
of the anisotropies have been produced. Fixing a SNR
threshold, the minimum effective strain sensitivity, called
hleffðfÞ, has been computed, taking into account the noise of
detectors, the observation time, and some frequency inter-
val. They find that future space interferometers may reach
angular scales corresponding to l ∼ 8–10 being also more
sensitive to even multipoles than odd ones. Such results are
ascribed to the properties of the response functions and to
the geometric properties of the detectors. As a conse-
quence, also the angular resolution of space interferometers
is rather poor and the detectable multipole moments are
very restrictive. However, some of the effects computed in
this paper, that affect the SGWB of cosmological origin, like
the Sachs-Wolfe and integrated Sachs-Wolfe, are effective
on a very large scale, so a careful analysis is mandatory
to really assess the possibility of their detection. Another
relevant aspect to take into account is the amplitude of the
monopole, which, as shown in Eq. (2.9), is a multiplicative
factor in front of the observable spectrum. This means that,
if we have primordial GW models which have a large
(monopole) amplitude at scales probed by interferometers,
this can increase the amplitude of the anisotropies at a level
that can be probed by future GW detectors.

VIII. CONCLUSION

The amount of information extracted from the detection
of GW signals by the LIGO-Virgo Collaboration has shown
the power of gravitational waves to study an astrophysical
compact object and to give relevant cosmological infor-
mation on the late time universe. At the same level, the
improving angular resolution of future GW detectors
will allow one to extract precious information from the
detection of the stochastic background of GWs generated
both from the superposition of unresolved astrophysical
sources and from cosmological sources, like inflation,
phase transition, or topological defects. However, high
sensitivity alone will not be sufficient for discriminating
among different contributions. So it becomes necessary to
characterize such backgrounds using observables that can
give a clear hint about the origin of the signals. As recently
studied, a parity-violating SGWB, which represents a
smoking gun for some cosmological signals, can be probed
using ground- and space-based interferometers [63].
Another important tool is the directionality dependence
of the SGWB. As shown for astrophysical GW, the
distribution of sources implies that the energy density is
characterized by an anisotropic contribution beyond the
isotropic one.
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FIG. 2. Representation of the GW spectral density ΩGW and of
fδGWNL for the model given in Eqs. (6.50), (6.51), choosing a scale
invariant Pζ . Notice that the magnitude of fδGWNL is amplified
around the position where the spectral density changes slope.
We have chosen the parameters α ¼ 2, β ¼ 5, κ0 ¼ 1=10,
Ω0 ¼ 10−12, q⋆ ¼ 10−5 Hz−1.
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In the same way we expect that, analogously to CMB
photons, also primordial GW are charaterized by anisot-
ropies that can be generated both at the moment of
production and during their propagation. In this paper
we focused on the stochastic background of cosmological
origin, and we studied the anisotropies due to the produc-
tion mechanism (that we encode in an initial condition
term) plus those generated from the propagation of GW on
the perturbed universe, using a Boltzmann approach. We
solved the Boltzmann equation for the graviton distribution
function considering a FLRW metric with both scalar and
tensor inhomogeneities. We showed that, contrary to CMB
photons, at the moment of production, GWs, which are
characterized by a nonthermal spectrum, generically result
in angular anisotropies that have an order one dependence
on the GW frequency. We provide a criterion to evaluate
whether and how much the GW anisotropies depend on
frequency. As an example, we evaluate this criterion in the
case where an axion inflaton ϕ sources gauge fields, which
in turn generates a large GW background.
Additional anisotropies are induced by the GW propa-

gation in the large-scale scalar and tensor perturbations of
the universe. We compute the angular power spectrum of
the SGWB energy density, and, analogously to CMB
photons, also the gravitons distribution function gets
mainly affected by the Sachs-Wolfe effect on large scales,
while the integrated Sachs-Wolfe effect is subdominant.
We then focused on a second observable that can be a

crucial tool in discriminating an astrophysical from a
cosmological background, namely its departure from
Gaussian statistics. While we expect that the astrophysical
background is Gaussian, due to central limit theorem,
(some) cosmological backgrounds should show non-
Gaussian statistics. We computed the 3-point function
(bispectrum) of the SGWB energy density, which is not
affected by de-correlation issues, both considering the
effects at generation and due to propagation. We have
shown that also the SGWB bispectrum carries a memory of
the initial condition and that it is proportional to the non-
Gaussianity of the scalar perturbations. In this sense, the
SGWB can be used as a novel probe (beyond the CMB and
the large scale structure) of the non-Gaussianity of the
scalar perturbations.
Finally we considered nonlinear effects induced by

long-wavelength scalar perturbations, which generate a
modulation effect on the correlation functions of the
short-wavelength modes. We identified the effects of long
modes with an appropriate coordinate transformation and
we computed the effect of nonlinearities in inducing
a nonvanishing squeezed limit of the SGWB 3-point
correlation function. We quantified the dependence of
the squeezed bispectrum on the scale dependence of the
spectrum of primordial scalar fluctuations similar to
Maldacena consistency relation, on the momentum depend-
ence of the background SGWB distribution function, and

on the time, scale, and direction dependence of the scalar
transfer function.
In summary, in this paper we have approached the

possibility to use CMB techniques to describe the cosmo-
logical SGWB trying to characterize it using peculiar
features that we do not expect to have in the astrophysical
background. Of course the detectability with interferome-
ters of such effects is one crucial step to address and we
plan to work on it in a future paper. At the same time we
also plan to analyze several additional physical effects that
we have neglected in this first paper, like the effects of
neutrinos on the GW amplitude or a possible direct
dependence of ΓI on n̂, which would give distinctive
signatures useful for the characterization.
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APPENDIX A: COMPUTATION OF THE
TENSOR SOURCED TERM

In this Appendix we present the steps from Eq. (3.12) to
Eq. (3.13) of the main text. The first goal is to obtain an
explicit expression for the integrand in Eq. (3.11), when the
integration variable k⃗ is oriented along the z axis. In the
{þ×} basis, related to the circular basis by

eij;λ ≡ eij;þ þ iλeij;×ffiffiffi
2

p ;

this orientation of k⃗ leads to

eij;þðk̂zÞ ¼
1ffiffiffi
2

p

0
B@

1 0 0

0 −1 0

0 0 0

1
CA;

eij;×ðk̂zÞ ¼
1ffiffiffi
2

p

0
B@

0 1 0

1 0 0

0 0 0

1
CA; ðA1Þ

so that

χ11ðk̂zÞ ¼ −χ22ðk̂zÞ ¼ χðη; kÞ ξ−2ðk⃗Þ þ ξ2ðk⃗Þ
2

;

χ12ðk̂zÞ ¼ χ21ðk̂zÞ ¼ χðη; kÞ ξ−2ðk⃗Þ − ξ2ðk⃗Þ
2i

; ðA2Þ

while the other entries vanish.
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We decompose the GW direction n̂ in a basis having k̂ as
the z axis

n̂ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − μ2k;n

q
cosϕk;n;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2k;n

q
sinϕk;n; μk;n


: ðA3Þ

In this basis

−
ninj

2
χ0ijðk⃗ ¼ kk̂zÞ ¼ −

1 − μ2k;n
4

χ0ðη; kÞ

× ½e2iϕk;nξ2ðk⃗Þ þ e−2iϕk;nξ−2ðk⃗Þ�:
ðA4Þ

Our goal is to compute

Γlm;T ¼
Z

d3k
ð2πÞ3 e

ik⃗·x⃗0

Z
d2ΩnΓTðη0; k⃗;ΩnÞY�

lmðΩnÞ;

ðA5Þ

with the knowledge that, when k⃗ is decomposed according
to (A3) (namely, with k̂ directed along thee z axis),

ΓTðη0; k⃗;Ωk;nÞ ¼ −
1 − μ2k;n

4

X
λ¼�2

eiλϕk;nξλðk⃗Þ

×
Z

η0

ηin

dηχ0ðη; kÞe−iμkðη0−ηÞk: ðA6Þ

We need to evaluate the integral (A5) for a generic
orientation of k⃗. On the other hand, the explicit expression
of the integrand (A6) holds only when k⃗ is oriented along
the z axis. We cope with this by rotating the integrand of theR
d2Ωn integration into a basis in which the direction n̂ is

decomposed according to Eq. (A3).
To achieve this, we introduce the rotation matrix

SðΩkÞ≡
0
B@

cos θk cosϕk − sinϕk sin θk cosϕk

cos θk sinϕk cosϕk sin θk sinϕk

− sin θk 0 cos θk

1
CA;

ðA7Þ

in terms of which

k̂ ¼ SðΩkÞ

0
B@

0

0

1

1
CA;

0
B@

sin θn cosϕn

sin θn sinϕn

cosϕn

1
CA ¼ SðΩkÞ

0
B@

sin θk;n cosϕk;n

sin θk;n sinϕk;n

cosϕk;n

1
CA: ðA8Þ

Under this rotation

Y�
lmðΩnÞ ¼

Xl
m0¼−l

DðlÞ
mm0 ðSðΩkÞÞY�

lm0 ðΩk;nÞ; dΩn ¼ dΩk;n; ðA9Þ

where the Wigner rotation matrix are given by

DðlÞ
ms ðSðΩkÞÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
ð−1Þs−sY�

lmðΩkÞ; ðA10Þ

in terms of the spin-weighted spherical harmonics

−sY�
lmðΩkÞ≡ ð−1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞ!ðl −mÞ!ð2lþ 1Þ

4πðlþ sÞ!ðl − sÞ!

s
sin2l

�
θk
2

�

×
Xl−s
r¼0

�
l − s

r

��
lþ s

rþ s −m

�
ð−1Þl−r−seimϕkcot2rþs−m

�
θk
2

�
: ðA11Þ

With this relation, Eq. (A5) can be then rewritten as

Γlm;T ¼
Z

d3k
ð2πÞ3 e

ik⃗·x⃗0
Xl

m0¼−l

DðlÞ
mm0 ðSðΩkÞÞ

Z
d2Ωk;nY�

lm0 ðΩk;nÞΓTðη0; k⃗;Ωk;nÞ; ðA12Þ

where now the innermost integrand is performed in a basis in which the n̂ vector is decomposed according to (A3), so that
the explicit expression (A6) can be used.

CHARACTERIZING THE COSMOLOGICAL GRAVITATIONAL … PHYS. REV. D 102, 023527 (2020)

023527-19



The inner integral evaluates to

Z
d2Ωk;nY�

lm0 ðΩk;nÞΓTðη0; k⃗;Ωk;nÞ ¼
Z

d2Ωk;n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl −m0Þ!
ðlþm0Þ!

s
Pm0
l ðμk;nÞe−im0ϕk;n

× ð−1Þ 1 − μ2k;n
4

X
λ¼�2

eiλϕk;nξλðk⃗Þ
Z

η0

ηin

dηχ0ðη; kÞe−iμkðη0−ηÞk

¼ −
Z

η0

ηin

dηχ0ðη; kÞ
Z

1

−1
dμk;n

1 − μ2k;n
4

e−iμkðη0−ηÞkP2
lðμk;nÞ2π

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl − 2Þ!
ðlþ 2Þ!

s X
λ¼�2

δm0λξλðk⃗Þ

¼
Z

η0

ηin

dηχ0ðη; kÞð−iÞl jlðkðη0 − ηÞÞ
k2ðη0 − ηÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
1

4

X
λ¼�2

δm0λξλðk⃗Þ:

ðA13Þ

Inserting this into Eq. (A12), and using the relation (A10) for the Wigner elements we finally arrive to Eq. (3.13) of the
main text.

APPENDIX B: TENSOR CONTRIBUTION TO THE GW BISPECTRUM

In this Appendix we present the steps from Eq. (4.14) to Eq. (4.15) of the main text. We start by introducing the quantity
F λ

l1l2l3
ðk1; k2; k3Þ from Eq. (2.6) of [40]:

	Y3
i¼1

Z
dΩkiξλðk⃗iÞ−λY�

limi
ðΩkiÞ



≡ ð2πÞ3F λ

l1l2l3
ðk1; k2; k3Þ

�
l1 l2 l3

m1 m2 m3

�
ðB1Þ

[where we have also used Eq. (2.6) of [40] at the left-hand side]. This relation is inverted by Eq. (2.7) of [40]:

F λ
l1l2l3

ðk1; k2; k3Þ ¼
X

m1;m2;m3

�
l1 l2 l3

m1 m2 m3

�Z
dΩk1

Z
dΩk2

Z
dΩk3

× −λY
�
l1m1

ðΩk1Þ−λY�
l2m2

ðΩk2Þ−λY�
l3m3

ðΩk3Þ
1

ð2πÞ3 hξλðk⃗1Þξλðk⃗2Þξλðk⃗3Þi: ðB2Þ

We insert Eq. (B1) in Eq. (4.14) to obtain

	Y3
i¼1

Γlimi;T



¼ Gm1m2m3

l1l2l3

�
l1 l2 l3

0 0 0

�−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π

ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

s

×

�Y3
i¼1

4πð−iÞli
Z

k2i dki
ð2πÞ3 T

T
l;iðki; η0; ηinÞ

�
ð2πÞ3

X
λ¼�2

F λ
l1l2l3

ðk1; k2; k3Þ; ðB3Þ

where the relation (4.12) has also been used. We collect some of the factors in this expression into the combination

F̃ λ
l1l2l3ðk1; k2; k3Þ≡

�
l1 l2 l3

0 0 0

�−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π

ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

s
ð2πÞ3F λ

l1l2l3
ðk1; k2; k3Þ; ðB4Þ

which then evaluates to the relation (4.16) in the main text. In terms of F̃ we then recover Eq. (4.15) of the main text.
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APPENDIX C: COMPARISON WITH THE CMB

In the CMB case for a temperature Tðn̂Þ ¼ T̄ þ δTðn̂Þ,
we have

f̄ðpÞ ¼ 1

e
p
T̄ − 1

;

fðp; n̂Þ ¼ 1

e
p

Tðn̂Þ − 1
¼ 1

e
p
T̄ − 1

þ e
p
T̄

ðepT̄ − 1Þ2
p
T̄
δTðn̂Þ
T̄

¼ f̄ðpÞ − p
∂f̄ðpÞ
∂p

δTðn̂Þ
T̄

; ðC1Þ

from which it follows

Γðn̂Þ ¼ δTðn̂Þ
T̄

; p independent: ðC2Þ

To connect with the description of the SGWB, we also
define

wCMBðp; n̂Þ ¼
p4fðp; n̂Þ

ρcrit
; w̄CMBðpÞ ¼

p4f̄ðpÞ
ρcrit

ðC3Þ

so that we have the p-dependent quantity

δCMBðp; n̂Þ≡ wCMBðp; n̂Þ − w̄CMBðpÞ
w̄CMBðpÞ

¼ e
p
T̄

e
p
T̄ − 1

p
T̄
δTðn̂Þ
T̄

ðC4Þ

as well as the p-dependent quantity

4−
∂ lnω̄CMBðη0;pÞ

∂ lnp ¼ 4−
ρcrit

p3f̄ðpÞ
�
4p3f̄ðpÞ

ρcrit
þ p4

ρcrit

∂f̄ðpÞ
∂p

�

¼−pðep
T̄ −1Þ − 1

T̄ e
p
T̄

ðepT̄ −1Þ2 ¼
p
T̄ e

p
T̄

e
p
T̄ −1

: ðC5Þ

So the ratio

δCMBðp; n̂Þ
4 − ∂ ln ω̄CMBðη0;pÞ∂ lnp

¼ δTðn̂Þ
T̄

ðC6Þ

is indeed p independent.
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