2,184 research outputs found

    Hidden gauge structure and derivation of microcanonical ensemble theory of bosons from quantum principles

    Full text link
    Microcanonical ensemble theory of bosons is derived from quantum mechanics by making use of a hidden gauge structure. The relative phase interaction associated with this gauge structure, described by the Pegg-Barnett formalism, is shown to lead to perfect decoherence in the thermodynamics limit and the principle of equal a priori probability, simultaneously.Comment: 10 page

    Single-shot measurement of quantum optical phase

    Full text link
    Although the canonical phase of light, which is defined as the complement of photon number, has been described theoretically by a variety of distinct approaches, there have been no methods proposed for its measurement. Indeed doubts have been expressed about whether or not it is measurable. Here we show how it is possible, at least in principle, to perform a single-shot measurement of canonical phase using beam splitters, mirrors, phase shifters and photodetectors.Comment: This paper was published in PRL in 2002 but, at the time, was not placed on the archive. It is included now to make accessing this paper easie

    The fundamental cycle of concept construction underlying various theoretical frameworks

    Get PDF
    In this paper, the development of mathematical concepts over time is considered. Particular reference is given to the shifting of attention from step-by-step procedures that are performed in time, to symbolism that can be manipulated as mental entities on paper and in the mind. The development is analysed using different theoretical perspectives, including the SOLO model and various theories of concept construction to reveal a fundamental cycle underlying the building of concepts that features widely in different ways of thinking that occurs throughout mathematical learning

    Military Counterterrorism Measures, Civil–Military Relations, and Democracy: The Cases of Turkey and the United States

    Get PDF
    This study examines how military counter-terrorism (CT) measures affect the quality of democracy by altering civil-military relations (CMR) and focuses on civil-military relations as the main causal mechanism. We argue that the use of a military approach in counter-terrorism jeopardizes democracy at the societal level by increasing the belief that only the military is equipped to deal with the threat at hand. Therefore, erosions of civil liberties are tolerated in exchange for security. Second, we argue that military CT measures change the balance between the military and executive powers in procedural and liberal democracies. While the military’s executive power increases in procedural democracies, the civilian ruler’s control of the military power increases in liberal ones. Case studies of the U.S. and Turkey show that a military counter-terrorism approach affects CMR in these countries, which generate a similar tradeoff between security and the quality of democracy, albeit via different causal mechanisms. While that tradeoff is less severe in the U.S., Turkey is more vulnerable to erosion of democracy

    Retrodiction with two-level atoms: atomic previvals

    Get PDF
    In the Jaynes-Cummings model a two-level atom interacts with a single-mode electromagnetic field. Quantum mechanics predicts collapses and revivals in the probability that a measurement will show the atom to be excited at various times after the initial preparation of the atom and field. In retrodictive quantum mechanics we seek the probability that the atom was prepared in a particular state given the initial state of the field and the outcome of a later measurement on the atom. Although this is not simply the time reverse of the usual predictive problem, we demonstrate in this paper that retrodictive collapses and revivals also exist. We highlight the differences between predictive and retrodictive evolutions and describe an interesting situation where the prepared state is essentially unretrodictable.Comment: 15 pages, 3 (5) figure

    Constraints for quantum logic arising from conservation laws and field fluctuations

    Full text link
    We explore the connections between the constraints on the precision of quantum logical operations that arise from a conservation law, and those arising from quantum field fluctuations. We show that the conservation-law based constraints apply in a number of situations of experimental interest, such as Raman excitations, and atoms in free space interacting with the multimode vacuum. We also show that for these systems, and for states with a sufficiently large photon number, the conservation-law based constraint represents an ultimate limit closely related to the fluctuations in the quantum field phase.Comment: To appear in J. Opt. B: Quantum Semiclass. Opt., special issue on quantum contro
    • …
    corecore