37 research outputs found
Darwinian Selection and Non-existence of Nash Equilibria
We study selection acting on phenotype in a collection of agents playing
local games lacking Nash equilibria. After each cycle one of the agents losing
most games is replaced by a new agent with new random strategy and game
partner. The network generated can be considered critical in the sense that the
lifetimes of the agents is power law distributed. The longest surviving agents
are those with the lowest absolute score per time step. The emergent ecology is
characterized by a broad range of behaviors. Nevertheless, the agents tend to
be similar to their opponents in terms of performance.Comment: 4 pages, 5 figure
Chemically engineered extracts of St John’s wort as sources of polyprenylated acylphloroglucinols to prevent endothelial dysfunction
International audienc
Prenylated polyphenols from Clusiaceae and Calophyllaceae with immunomodulatory activity on endothelial cells
Endothelial cells (ECs) are key players in inflammation and immune responses involved in numerous pathologies. Although attempts were experimentally undertaken to prevent and control EC activation, drug leads and probes still remain necessary. Natural products (NPs) from Clusiaceous and Calophyllaceous plants were previously reported as potential candidates to prevent endothelial dysfunction. The present study aimed to identify more precisely the molecular scaffolds that could limit EC activation. Here, 13 polyphenols belonging to 5 different chemical types of secondary metabolites (i.e., mammea coumarins, a biflavonoid, a pyranochromanone acid, a polyprenylated polycyclic acylphloroglucinol (PPAP) and two xanthones) were tested on resting and cytokine-activated EC cultures. Quantitative and qualitative changes in the expression of both adhesion molecules (VCAM-1, ICAM-1, E-selectin) and major histocompatibility complex (MHC) molecules have been used to measure their pharmaceutical potential. As a result, we identified 3 mammea coumarins that efficiently reduce (up to >90% at 10 ÎĽM) both basal and cytokine-regulated levels of MHC class I, class II, MICA and HLA-E on EC surface. They also prevented VCAM-1 induction upon inflammation. From a structural point of view, our results associate the loss of the free prenyl group substituting mammea coumarins with a reduced cellular cytotoxicity but also an abrogation of their anti-inflammatory potential and a reduction of their immunosuppressive effects. A PPAP, guttiferone J, also triggers a strong immunomodulation but restricted to HLA-E and MHC class II molecules. In conclusion, mammea coumarins with a free prenyl group and the PPAP guttiferone J emerge as NPs able to drastically decrease both VCAM-1 and a set of MHC molecules and to potentially reduce the immunogenicity of the endothelium
Genome-wide Maps of Nuclear Lamina Interactions in Single Human Cells
Mammalian interphase chromosomes interact with the nuclear lamina (NL) through hundreds of large lamina-associated domains (LADs). We report a method to map NL contacts genome-wide in single human cells. Analysis of nearly 400 maps reveals a core architecture consisting of gene-poor LADs that contact the NL with high cell-to-cell consistency, interspersed by LADs with more variable NL interactions. The variable contacts tend to be cell-type specific and are more sensitive to changes in genome ploidy than the consistent contacts. Single-cell maps indicate that NL contacts involve multivalent interactions over hundreds of kilobases. Moreover, we observe extensive intra-chromosomal coordination of NL contacts, even over tens of megabases. Such coordinated loci exhibit preferential interactions as detected by Hi-C. Finally, the consistency of NL contacts is inversely linked to gene activity in single cells and correlates positively with the heterochromatic histone modification H3K9me3. These results highlight fundamental principles of single-cell chromatin organization.National Institutes of Health (U.S.) (Grant R01 GM114190)National Human Genome Research Institute (U.S.) (Grant R01 HG003143
The Insulator Protein SU(HW) Fine-Tunes Nuclear Lamina Interactions of the Drosophila Genome
Specific interactions of the genome with the nuclear lamina (NL) are thought to assist chromosome folding inside the nucleus and to contribute to the regulation of gene expression. High-resolution mapping has recently identified hundreds of large, sharply defined lamina-associated domains (LADs) in the human genome, and suggested that the insulator protein CTCF may help to demarcate these domains. Here, we report the detailed structure of LADs in Drosophila cells, and investigate the putative roles of five insulator proteins in LAD organization. We found that the Drosophila genome is also organized in discrete LADs, which are about five times smaller than human LADs but contain on average a similar number of genes. Systematic comparison to new and published insulator binding maps shows that only SU(HW) binds preferentially at LAD borders and at specific positions inside LADs, while GAF, CTCF, BEAF-32 and DWG are mostly absent from these regions. By knockdown and overexpression studies we demonstrate that SU(HW) weakens genome – NL interactions through a local antagonistic effect, but we did not obtain evidence that it is essential for border formation. Our results provide insights into the evolution of LAD organization and identify SU(HW) as a fine-tuner of genome – NL interactions
DLL4 conveys Notch-dependent signals achieving selective macrophage differentiation or death
International audienceMolecular mechanisms underlying vascular and inflammatory cell network at endothelial and macrophage levels are still unclear. Here we found that microvascular inflammation associates with changes in Notch signaling at endothelium/monocyte interface including loss of endothelial Notch4 and the acquisition of the Notch ligand Dll4 in both cell types. We showed that endothelial DLL4 induces circulating monocytes to polarize into a M1-type pro-inflammatory macrophages (CD40highCD64highCD200Rlow HLADRlowCD11blow) eliciting the production of IL-6. Dll4 and IL-6 are both Notch-dependent and are required for macrophage polarization through selective down and upregulation of M2and M1-type markers, respectively. Subsequently, we investigated the ability of DLL4 to interfere with M2 polarization. We found that DLL4 triggers a specific alteration of the IL-4 induced M2 phenotype through a significant inhibition of M2 markers (CD11b, CD206, CD200R). DLL4 also induces caspase3/7-dependent apoptosis specifically in M2 differentiating macrophages while DLL1 had no effect. DLL4 signals via Notch1 and DLL4mediated apoptosis is Notch-dependent. Fully differentiated M2 macrophages became resistant to DLL4 action. DLL4 upregulates gene expression, upon M2 upon differentiation, affecting the Notch pattern (Notch1, 3, Jag1) and activity (Hes1), transcription (IRF5, STAT1) that associates with decrease in Akt but not STAT6 phosphorylation. In conclusion, our findings reveal an interplay between DLL4/Notch and IL-6/IL-6R or IL-4/IL-4R signaling pathways supporting M1 differentiation and impairing M2 differentiation via apoptosis