712 research outputs found

    Quantum reflection of antihydrogen from a liquid helium film

    Full text link
    We study the quantum reflection of ultracold antihydrogen atoms bouncing on the surface of a liquid helium film. The Casimir-Polder potential and quantum reflection are calculated for different thicknesses of the film supported by different substrates. Antihydrogen can be protected from anni- hilation for as long as 1.3s on a bulk of liquid 4He, and 1.7s for liquid 3He. These large lifetimes open interesting perspectives for spectroscopic measurements of the free fall acceleration of antihydrogen. Variation of the scattering length with the thickness of a film of helium shows interferences which we interpret through a Liouville transformation of the quantum reflection problem

    A spectroscopy approach to measure the gravitational mass of antihydrogen

    Full text link
    We study a method to induce resonant transitions between antihydrogen (Hˉ\bar{H}) quantum states above a material surface in the gravitational field of the Earth. The method consists of applying a gradient of magnetic field, which is temporally oscillating with the frequency equal to a frequency of transition between gravitational states of antihydrogen. A corresponding resonant change in the spatial density of antihydrogen atoms could be measured as a function of the frequency of applied field. We estimate an accuracy of measuring antihydrogen gravitational states spacing and show how a value of the gravitational mass of the Hˉ\bar{H} atom could be deduced from such a measurement. We also demonstrate that a method of induced transitions could be combined with a free-fall-time measurement in order to further improve the precision

    Evidence of entropically driven C₆₀ fullerene aggregation in aqueous solution

    Get PDF
    In the present work, we report the first experimental evidence of entropically driven C₆₀ fullerene aggregation in aqueous solution, occurring with nearly zero enthalpy chang

    Complexation of aromatic drugs with single-walled carbon nanotubes

    Get PDF
    We report a detailed study of the complexation of aromatic molecules and drugs with the surface of single-walled carbon nanotubes (SWCNTs, the diameter and the length ranges are 0.5-2 nm and 1-5 μm, respectively) in terms of equilibrium binding constants, K. It is found that the binding constants have magnitudes of the order of 104-105 M-1 and that there is some ligand specificity to the SWCNT surface depending on the structure of the aromatic molecul

    Spectroscopic study of proflavine adsorption on the carbon nanotube surface

    Get PDF
    The present paper sheds light on one of the possible mechanisms of interaction between the typical aromatic dye proflavine and the carbon nanotube surface, namely, π-stacking between aromatic rings of these compounds. To investigate such a complexation, a qualitative analysis was performed by means of ultraviolet visible, infrared, and nuclear magnetic resonance spectroscopy. The data obtained suggest that π-stacking brings the major contribution to the stabilization of the complex between proflavine and the carbon nanotub

    A magneto-gravitational trap for precision studies of gravitational quantum states

    Full text link
    Observation time is the key parameter for improving the precision of measurements of gravitational quantum states of particles levitating above a reflecting surface. We propose a new method of long confinement in such states of atoms, anti-atoms, neutrons and other particles possessing a magnetic moment. The Earth gravitational field and a reflecting mirror confine particles in the vertical direction. The magnetic field originating from electric current passing through a vertical wire confines particles in the radial direction. Under appropriate conditions, motions along these two directions are decoupled to a high degree. We estimate characteristic parameters of the problem, and list possible systematic effects that limit storage times due to the coupling of the two motions. In the limit of low particle velocities and magnetic fields, precise control of the particle motion and long storage times in the trap can provide ideal conditions for both gravitational, optical and hyperfine spectroscopy: for the sensitive verification of the equivalence principle for antihydrogen atoms; for increasing the accuracy of optical and hyperfine spectroscopy of atoms and antiatoms; for improving constraints on extra fundamental interactions from experiments with neutrons, atoms and antiatoms

    Variational calculations for the hydrogen-antihydrogen system with a mass-scaled Born-Oppenheimer potential

    Full text link
    The problem of proton-antiproton motion in the H{\rm H}--Hˉ{\rm \bar{H}} system is investigated by means of the variational method. We introduce a modified nuclear interaction through mass-scaling of the Born-Oppenheimer potential. This improved treatment of the interaction includes the nondivergent part of the otherwise divergent adiabatic correction and shows the correct threshold behavior. Using this potential we calculate the vibrational energy levels with angular momentum 0 and 1 and the corresponding nuclear wave functions, as well as the S-wave scattering length. We obtain a full set of all bound states together with a large number of discretized continuum states that might be utilized in variational four-body calculations. The results of our calculations gives an indication of resonance states in the hydrogen-antihydrogen system

    Development of a PbWO4 Detector for Single-Shot Positron Annihilation Lifetime Spectroscopy at the GBAR Experiment

    Get PDF
    We have developed a PbWO4 (PWO) detector with a large dynamic range to measure the intensity of a positron beam and the absolute density of the ortho-positronium (o-Ps) cloud it creates. A simulation study shows that a setup based on such detectors may be used to determine the angular distribution of the emission and reflection of o-Ps to reduce part of the uncertainties of the measurement. These will allow to improve the precision in the measurement of the cross-section for the (anti)hydrogen formation by (anti)proton-positronium charge exchange and to optimize the yield of antihydrogen ion which is an essential parameter in the GBAR experiment

    Increased distractibility in schizotypy: Independent of individual differences in working memory capacity?

    Get PDF
    Individuals with schizophrenia typically show increased levels of distractibility. This has been attributed to impaired working memory capacity (WMC), since lower WMC is typically associated with higher distractibility, and schizophrenia is typically associated with impoverished WMC. Here, participants performed verbal and spatial serial recall tasks that were accompanied by to-be-ignored speech tokens. For the few trials wherein one speech token was replaced with a different token, impairment was produced to task scores (a deviation effect). Participants subsequently completed a schizotypy questionnaire and a WMC measure. Higher schizotypy scores were associated with lower WMC (as measured with operation span, OSPAN), but WMC and schizotypy scores explained unique variance in relation to the mean magnitude of the deviation effect. These results suggest that schizotypy is associated with heightened domain-general distractibility, but that this is independent of its relationship with WMC
    corecore