352 research outputs found

    CFHT AO Imaging of the CLASS Gravitational Lens System B1359+154

    Get PDF
    We present adaptive optics imaging of the CLASS gravitational lens system B1359+154 obtained with the Canada-France-Hawaii Telescope (CFHT) in the infrared K band. The observations show at least three brightness peaks within the ring of lensed images, which we identify as emission from multiple lensing galaxies. The results confirm the suspected compound nature of the lens, as deduced from preliminary mass modeling. The detection of several additional nearby galaxies suggests that B1359+154 is lensed by the compact core of a small galaxy group. We attempted to produce an updated lens model based on the CFHT observations and new 5-GHz radio data obtained with the MERLIN array, but there are too few constraints to construct a realistic model at this time. The uncertainties inherent with modeling compound lenses make B1359+154 a challenging target for Hubble constant determination through the measurement of differential time delays. However, time delays will offer additional constraints to help pin down the mass model. This lens system therefore presents a unique opportunity to directly measure the mass distribution of a galaxy group at intermediate redshift.Comment: 12 pages including 3 figures; ApJL accepte

    Zitterbewegung of Klein-Gordon particles and its simulation by classical systems

    Full text link
    The Klein-Gordon equation is used to calculate the Zitterbewegung (ZB, trembling motion) of spin-zero particles in absence of fields and in the presence of an external magnetic field. Both Hamiltonian and wave formalisms are employed to describe ZB and their results are compared. It is demonstrated that, if one uses wave packets to represent particles, the ZB motion has a decaying behavior. It is also shown that the trembling motion is caused by an interference of two sub-packets composed of positive and negative energy states which propagate with different velocities. In the presence of a magnetic field the quantization of energy spectrum results in many interband frequencies contributing to ZB oscillations and the motion follows a collapse-revival pattern. In the limit of non-relativistic velocities the interband ZB components vanish and the motion is reduced to cyclotron oscillations. The exact dynamics of a charged Klein-Gordon particle in the presence of a magnetic field is described on an operator level. The trembling motion of a KG particle in absence of fields is simulated using a classical model proposed by Morse and Feshbach -- it is shown that a variance of a Gaussian wave packet exhibits ZB oscillations.Comment: 16 pages and 7 figure

    The Sloan Lens ACS Survey. IX. Colors, Lensing and Stellar Masses of Early-type Galaxies

    Full text link
    We present the current photometric dataset for the Sloan Lens ACS (SLACS) Survey, including HST photometry from ACS, WFPC2, and NICMOS. These data have enabled the confirmation of an additional 15 grade `A' (certain) lens systems, bringing the number of SLACS grade `A' lenses to 85; including 13 grade `B' (likely) systems, SLACS has identified nearly 100 lenses and lens candidates. Approximately 80% of the grade `A' systems have elliptical morphologies while ~10% show spiral structure; the remaining lenses have lenticular morphologies. Spectroscopic redshifts for the lens and source are available for every system, making SLACS the largest homogeneous dataset of galaxy-scale lenses to date. We have developed a novel Bayesian stellar population analysis code to determine robust stellar masses with accurate error estimates. We apply this code to deep, high-resolution HST imaging and determine stellar masses with typical statistical errors of 0.1 dex; we find that these stellar masses are unbiased compared to estimates obtained using SDSS photometry, provided that informative priors are used. The stellar masses range from 10^10.5 to 10^11.8 M_\odot and the typical stellar mass fraction within the Einstein radius is 0.4, assuming a Chabrier IMF. The ensemble properties of the SLACS lens galaxies, e.g. stellar masses and projected ellipticities, appear to be indistinguishable from other SDSS galaxies with similar stellar velocity dispersions. This further supports that SLACS lenses are representative of the overall population of massive early-type galaxies with M* >~ 10^11 M_\odot, and are therefore an ideal dataset to investigate the kpc-scale distribution of luminous and dark matter in galaxies out to z ~ 0.5.Comment: 20 pages, 18 figures, 5 tables, published in Ap

    Cyclotron motion in graphene

    Full text link
    We investigate cyclotron motion in graphene monolayers considering both the full quantum dynamics and its semiclassical limit reached at high carrier energies. Effects of zitterbewegung due to the two dispersion branches of the spectrum dominate the irregular quantum motion at low energies and are obtained as a systematic correction to the semiclassical case. Recent experiments are shown to operate in the semiclassical regime.Comment: 6 pages, 1 figure include

    High resolution observations and mass modelling of the CLASS gravitational lens B1152+199

    Get PDF
    We present a series of high resolution radio and optical observations of the CLASS gravitational lens system B1152+199 obtained with the Multi-Element Radio-Linked Interferometer Network (MERLIN), Very Long Baseline Array (VLBA) and Hubble Space Telescope (HST). Based on the milliarcsecond-scale substructure of the lensed radio components and precise optical astrometry for the lensing galaxy, we construct models for the system and place constraints on the galaxy mass profile. For a single galaxy model with surface mass density Sigma(r) propto r^-beta, we find that 0.95 < beta < 1.21 at 2-sigma confidence. Including a second deflector to represent a possible satellite galaxy of the primary lens leads to slightly steeper mass profiles.Comment: 7 pages, post-referee revision for MNRA

    CLASS B0827+525: `Dark lens' or binary radio-loud quasar?

    Get PDF
    We present radio, optical, near-infrared and spectroscopic observations of the source B0827+525. We consider this source as the best candidate from the Cosmic Lens All-Sky Survey (CLASS) for a `dark lens' system or binary radio-loud quasar. The system consists of two radio components with somewhat different spectral indices, separated by 2.815 arcsec. VLBA observations show that each component has substructure on a scale of a few mas. A deep K-band exposure with the W.M.Keck-II Telescope reveals emission near both radio components. The K-band emission of the weaker radio component appears extended, whereas the emission from the brighter radio component is consistent with a point source. Hubble Space Telescope F160W-band observations with the NICMOS instrument confirms this. A redshift of 2.064 is found for the brighter component, using the LRIS instrument on the W.M.Keck-II Telescope. The probability that B0827+525 consists of two unrelated compact flat-spectrum radio sources is ~3%, although the presence of similar substructure in both component might reduce this. We discuss two scenarios to explain this system: (i) CLASS B0827+525 is a `dark lens' system or (ii) B0827+525 is a binary radio-loud quasar. B0827+525 has met all criteria that thus far have in 100% of the cases confirmed a source as an indisputable gravitational lens system. Despite this, no lens galaxy has been detected with m_F160W<=23 mag. Hence, we might have found the first binary radio-loud quasar. At this moment, however, we feel that the `dark lens' hypothesis cannot yet be fully excluded.Comment: 9 pages, 6 figures; Accepted for publication in Astronomy & Astrophysics; Full-res. images 1 and 3 can be obtained from L.V.E.

    CLASS B2108+213: A new wide separation gravitational lens system

    Get PDF
    We present observations of CLASS B2108+213, the widest separation gravitational lens system discovered by the Cosmic Lens All-Sky Survey. Radio imaging using the VLA at 8.46 GHz and MERLIN at 5 GHz shows two compact components separated by 4.56 arcsec with a faint third component in between which we believe is emission from a lensing galaxy. 5-GHz VLBA observations reveal milliarcsecond-scale structure in the two lensed images that is consistent with gravitational lensing. Optical emission from the two lensed images and two lensing galaxies within the Einstein radius is detected in Hubble Space Telescope imaging. Furthermore, an optical gravitational arc, associated with the strongest lensed component, has been detected. Surrounding the system are a number of faint galaxies which may help explain the wide image separation. A plausible mass distribution model for CLASS B2108+213 is also presented.Comment: 9 pages, 8 figures, accepted for publication in MNRA

    Measuring Cosmological Parameters with the JVAS and CLASS Gravitational Lens Surveys

    Get PDF
    The JVAS (Jodrell Bank-VLA Astrometric Survey) and CLASS (Cosmic Lens All-Sky Survey) are well-defined surveys containing about ten thousand flat-spectrum radio sources. For many reasons, flat-spectrum radio sources are particularly well-suited as a population from which one can obtain unbiased samples of gravitational lenses. These are by far the largest gravitational (macro)lens surveys, and particular attention was paid to constructing a cleanly-defined sample for the survey itself and for the underlying luminosity function. Here we present the constraints on cosmological parameters, particularly the cosmological constant, derived from JVAS and combine them with constraints from optical gravitational lens surveys, `direct' measurements of Ω0\Omega_{0}, H0H_{0} and the age of the universe, and constraints derived from CMB anisotropies, before putting this final result into the context of the latest results from other, independent cosmological tests.Comment: LaTeX, 9 pages, 6 PostScript figures, uses texas.sty. To appear in the Proceedings of the 19th Texas Symposium on Relativistic Astrophysics and Cosmology (CD-ROM). Paper version available on request. Actual poster (A0 and A4 versions) available from http://multivac.jb.man.ac.uk:8000/helbig/research/publications/info/ texas98.htm

    Interlayer Exchange Coupling Mediated by Valence Band Electrons

    Full text link
    The interlayer exchange coupling mediated by valence band electrons in all-semiconductor IV-VI magnetic/nonmagnetic superlattices is studied theoretically. A 3D tight-binding model, accounting for the band and magnetic structure of the constituent superlattice components is used to calculate the spin-dependent part of the total electronic energy. The antiferromagnetic coupling between ferromagnetic layers in EuS/PbS superlattices is obtained, in agreement with the experimental evidences. The results obtained for the coupling between antiferromagnetic layers in EuTe/PbTe superlattices are also presented.Comment: 8 pages, 6 figures, to be submitted to Phys.Rev.

    A New Quadruple Gravitational Lens System: CLASS B0128+437

    Get PDF
    High resolution MERLIN observations of a newly-discovered four-image gravitational lens system, B0128+437, are presented. The system was found after a careful re-analysis of the entire CLASS dataset. The MERLIN observations resolve four components in a characteristic quadruple-image configuration; the maximum image separation is 542 mas and the total flux density is 48 mJy at 5 GHz. A best-fit lens model with a singular isothermal ellipsoid results in large errors in the image positions. A significantly improved fit is obtained after the addition of a shear component, suggesting that the lensing system is more complex and may consist of multiple deflectors. The integrated radio spectrum of the background source indicates that it is a GigaHertz-Peaked Spectrum (GPS) source. It may therefore be possible to resolve structure within the radio images with deep VLBI observations and thus better constrain the lensing mass distribution.Comment: Accepted for publication in MNRAS. 4 pages, 3 included PostScript figure
    corecore