1,125 research outputs found

    Trajectories of Disease Accumulation Using Electronic Health Records

    Get PDF
    Multimorbidity is a major problem for patients and health services. However, we still do not know much about the common trajectories of disease accumulation that patients follow. We apply a data-driven method to an electronic health record dataset (CPRD) to analyse and condense the main trajectories to multimorbidity into simple networks. This analysis has never been done specifically for multimorbidity trajectories and using primary care based electronic health records. We start the analysis by evaluating temporal correlations between diseases to determine which pairs of disease appear significantly in sequence. Then, we use patient trajectories together with the temporal correlations to build networks of disease accumulation. These networks are able to represent the main pathways that patients follow to acquire multiple chronic conditions. The first network that we find contains the common diseases that multimorbid patients suffer from and shows how diseases like diabetes, COPD, cancer and osteoporosis are crucial in the disease trajectories. The results we present can help better characterize multimorbid patients and highlight common combinations helping to focus treatment to prevent or delay multimorbidity progression

    Th Ages for Metal-Poor Stars

    Full text link
    With a sample of 22 metal-poor stars, we demonstrate that the heavy element abundance pattern (Z > 55) is the same as the r-process contributions to the solar nebula. This bolsters the results of previous studies that there is a universal r-process production pattern. We use the abundance of thorium in five metal-poor stars, along with an estimate of the initial Th abundance based on the abundances of stable r-process elements, to measure their ages. We have four field red giants with errors of 4.2 Gyr in their ages and one M92 giant with an error of 5.6 Gyr, based on considering the sources of observational error only. We obtain an average age of 11.4 Gyr, which depends critically on the assumption of an initial production ratio of Th/Eu of 0.496. If the Universe is 15 Gyr old, then the initial Th/Eu value should be 0.590, in agreement with some theoretical models of the r-process.Comment: 26 pages, to be published in Ap

    Ferroelectric photovoltaic properties in doubly substituted (Bi0.9La0.1)(Fe0.97Ta0.03)O3 thin films

    Get PDF
    This work was supported by the DOE-EPSCoR Grant No. DE-FG02-08ER46526. Acknowledgment is also due to NSF Grant No. #1002410 for providing fellowships to R.K.K., D.B., and J.S.Y.Doubly substituted [Bi0.9La0.1][Fe0.97Ta0.03]O3 (BLFTO) films were fabricated on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition. The ferroelectric photovoltaic properties of ZnO:Al/BLFTO/Pt thin film capacitor structures were evaluated under white light illumination. The open circuit voltage and short circuit current density were observed to be ∼0.20 V and ∼1.35 mA/cm2, respectively. The band gap of the films was determined to be ∼2.66 eV, slightly less than that of pure BiFeO3 (2.67 eV). The PVproperties of BLFTO thin films were also studied for various pairs of planar electrodes in different directions in polycrystalline thin films.Publisher PDFPeer reviewe

    The Gas Transfer through Polar Sea Ice Experiment: Insights into the Rates and Pathways that Determine Geochemical Fluxes

    Get PDF
    Sea ice is a defining feature of the polar marine environment. It is a critical domain for marine biota and it regulates ocean-atmosphere exchange, including the exchange of greenhouse gases such as CO2 and CH4. In this study, we determined the rates and pathways that govern gas transport through a mixed sea ice cover. N2O, SF6, 3He, 4He, and Ne were used as gas tracers of the exchange processes that take place at the ice-water and air-water interfaces in a laboratory sea ice experiment. Observation of the changes in gas concentrations during freezing revealed that He is indeed more soluble in ice than in water; Ne is less soluble in ice, and the larger gases (N2O and SF6) are mostly excluded during the freezing process. Model estimates of gas diffusion through ice were calibrated using measurements of bulk gas content in ice cores, yielding gas transfer velocity through ice (kice) of ∼5 × 10−4 m d−1. In comparison, the effective air-sea gas transfer velocities (keff) ranged up to 0.33 m d−1 providing further evidence that very little mixed-layer ventilation takes place via gas diffusion through columnar sea ice. However, this ventilation is distinct from air-ice gas fluxes driven by sea ice biogeochemistry. The magnitude of keff showed a clear increasing trend with wind speed and current velocity beneath the ice, as well as the combination of the two. This result indicates that gas transfer cannot be uniquely predicted by wind speed alone in the presence of sea ice

    The r-Process Enriched Low Metallicity Giant HD 115444

    Full text link
    New high resolution, very high signal-to-noise spectra of ultra-metal-poor (UMP) giant stars HD 115444 and HD 122563 have been gathered with the High-Resolution Echelle Spectrometer of the McDonald Observatory 2.7m Telescope. With these spectra, line identification and model atmosphere analyses have been conducted, emphasizing the neutron-capture elements. Twenty elements with Z > 30 have been identified in the spectrum of HD 115444. This star is known to have overabundances of the neutron-capture elements, but it has lacked a detailed analysis necessary to compare with nucleosynthesis predictions. The new study features a line-by-line differential abundance comparison of HD 115444 with the bright, well-studied halo giant HD 122563. For HD 115444, the overall metallicity is [Fe/H]~ -3.0. The abundances of the light and iron-peak elements generally show the same pattern as other UMP stars (e.g. overdeficiencies of manganese and chromium, overabundances of cobalt), but the differential analysis indicates several nucleosynthesis signatures that are unique to each star.Comment: To Appear in the Astrophysical Journa

    Electric field control of spins in bilayer graphene: Local moment formation and local moment interactions

    Full text link
    We study local moment formation for adatoms on bilayer graphene (BLG) within a mean-field theory of the Anderson impurity model. The wavefunctions of the BLG electrons induce strong particle-hole asymmetry and band dependence of the hybridization, which is shown to result in unusual features in the impurity model phase diagram. We also study the effect of varying the chemical potential, as well as varying an electric field perpendicular to the bilayer; the latter modifies the density of states of electrons in BLG and, more significantly, shifts the impurity energy. We show that this leads to regimes in the impurity phase diagram where local moments can be turned on or off by applying modest external electric fields. Finally, we show that the RKKY interaction between local moments can be varied by tuning the chemical potential (as has also been suggested in monolayer graphene) or, more interestingly, by tuning the electric field so that it induces changes in the band structure of BLG.Comment: Revised discussion and figures, 17 page

    Economic impact of improving patient safety using Sugammadex for routine reversal of neuromuscular blockade in Spain

    Get PDF
    Background: Neuromuscular blocking (NMB) agents are often administered to facilitate tracheal intubation and prevent patient movement during surgical procedures requiring the use of general anesthetics. Incomplete reversal of NMB, can lead to residual NMB, which can increase the risk of post-operative pulmonary complications. Sugammadex is indicated to reverse neuromuscular blockade induced by rocuronium or vecuronium in adults. The aim of this study is to estimate the clinical and economic impact of introducing sugammadex to routine reversal of neuromuscular blockade (NMB) with rocuronium in Spain. Methods: A decision analytic model was constructed reflecting a set of procedures using rocuronium that resulted in moderate or deep NMB at the end of the procedure. Two scenarios were considered for 537, 931 procedures using NMB agents in Spain in 2015: a scenario without sugammadex versus a scenario with sugammadex. Comparators included neostigmine (plus glycopyrrolate) and no reversal agent. The total costs for the healthcare system were estimated from the net of costs of reversal agents and overall cost offsets via reduction in postoperative pneumonias and atelectasis for which incidence rates were based on a Spanish real-world evidence (RWE) study. The model time horizon was assumed to be one year. Costs were expressed in 2019 euros (€) and estimated from the perspective of a healthcare system. One-way sensitivity analysis was carried out by varying each parameter included in the model within a range of +/- 50%. Results: The estimated budget impact of the introduction of sugammadex to the routine reversal of neuromuscular blockade in Spanish hospitals was a net saving of €57.1 million annually. An increase in drug acquisition costs was offset by savings in post-operative pulmonary events, including 4806 post-operative pneumonias and 13, 996 cases of atelectasis. The total cost of complications avoided was €70.4 million. All parameters included in the model were tested in sensitivity analysis and were favorable to the scenario with sugammadex. Conclusions: This economic analysis shows that sugammadex can potentially lead to cost savings for the reversal of rocuronium-induced moderate or profound NMB compared to no reversal and reversal with neostigmine in the Spanish health care setting. The economic model was based on data obtained from Spain and from assumptions from clinical practice and may not be valid for other countries

    The Age of the Galactic Disk

    Get PDF
    I review different methods devised to derive the age of the Galactic Disk, namely the Radio-active Decay (RD), the Cool White Dwarf Luminosity Function (CWDLF), old opne clusters (OOC) and the Color Magnitude Diagram (CMD) of the stars in the solar vicinity. I argue that the disk is likely to be 8-10 Gyr old. Since the bulk of globulars has an age around 13 Gyr, the possibility emerges that the Galaxy experienced a minimum of Star Formation at the end of the halo/bulge formation. This minimum might reflect the time at which the Galaxy started to acquire material to form the disk inside-out.Comment: 10 pages, 4 figure, invited review, in "The chemical evolution of the Milky Way : Stars vs Clusters, Vulcano (Italy), 20-24 September 199
    • …
    corecore