831 research outputs found

    Structural compliance, misfit strain and stripe nanostructures in cuprate superconductors

    Full text link
    Structural compliance is the ability of a crystal structure to accommodate variations in local atomic bond-lengths without incurring large strain energies. We show that the structural compliance of cuprates is relatively small, so that short, highly doped, Cu-O-Cu bonds in stripes are subject to a tensile misfit strain. We develop a model to describe the effect of misfit strain on charge ordering in the copper oxygen planes of oxide materials and illustrate some of the low energy stripe nanostructures that can result.Comment: 4 pages 5 figure

    Spectroscopy of SMC Wolf-Rayet Stars Suggests that Wind-Clumping does not Depend on Ambient Metallicity

    Get PDF
    The mass-loss rates of hot, massive, luminous stars are considered a decisive parameter in shaping the evolutionary tracks of such stars and influencing the interstellar medium on galactic scales. The small-scale structures (clumps) omnipresent in such winds may reduce empirical estimates of mass-loss rates by an evolutionarily significant factor of >=3. So far, there has been no direct observational evidence that wind-clumping may persist at the same level in environments with a low ambient metallicity, where the wind-driving opacity is reduced. Here we report the results of time-resolved spectroscopy of three presumably single Population I Wolf-Rayet stars in the Small Magellanic Cloud, where the ambient metallicity is ~1/5 Z_Sun.We detect numerous small-scale emission peaks moving outwards in the accelerating parts of the stellar winds.The general properties of the moving features, such as their velocity dispersions,emissivities and average accelerations, closely match the corresponding characteristics of small-scale inhomogeneities in the winds of Galactic Wolf-Rayet stars.Comment: 9 pages, 3 figures; accepted by ApJ Letter

    Absence of the Transition into Abrikosov Vortex State of Two-Dimensional Type-II Superconductor with Weak Pinning

    Full text link
    The resistive properties of thin amorphous NbO_{x} films with weak pinning were investigated experimentally above and below the second critical field H_{c2}. As opposed to bulk type II superconductors with weak pinning where a sharp change of resistive properties at the transition into the Abrikosov state is observed at H_{c4}, some percent below H_{c2} (V.A.Marchenko and A.V.Nikulov, 1981), no qualitative change of resistive properties is observed down to a very low magnetic field, H_{c4} < 0.006 H_{c2}, in thin films with weak pinning. The smooth dependencies of the resistivity observed in these films can be described by paraconductivity theory both above and below H_{c2}. This means that the fluctuation superconducting state without phase coherence remains appreciably below H_{c2} in the two-dimensional superconductor with weak pinning. The difference the H_{c4}/H_{c2} values, i.e. position of the transition into the Abrikosov state, in three- and two-dimensional superconductors conforms to the Maki-Takayama result 1971 year according to which the Abrikosov solution 1957 year is valid only for a superconductor with finite dimensions. Because of the fluctuation this solution obtained in the mean field approximation is not valid in a relatively narrow region below H_{c2} for bulk superconductors with real dimensions and much below H_{c2} for thin films with real dimensions. The superconducting state without phase coherence should not be identified with the mythical vortex liquid because the vortex, as a singularity in superconducting state with phase coherence, can not exist without phase coherence.Comment: 4 pages, 4 figure

    The effect of ice rubble on ice-ice sliding

    Get PDF
    Ice deformation processes in the Arctic can generate ice rubble. Many situations arise where ice fragments of varying size separate sea ice floes. While the shear forces between sea ice floes in direct contact with each other are controlled by ice-ice friction, what is not known is how the slip of the floes is affected by the presence of rubble between the sliding surfaces. We present the result of field experiments undertaken on sea ice in the Barents Sea. A doubledirect-shear experiment was done on floating sea ice in the field, with the addition of rubble ice between the sliding surfaces. This was achieved by pulling a floating ice block through a cut channel of open water 3m long, where broken ice filled the gap between the block and the channel sides. The displacement of the block and the force needed to move the block were measured. The time that the block was held motionless to allow the rubble to consolidate was recorded - this ranged from seconds to several hours. We found that the 'hold time' controls the maximum force needed to move the block. The relation between hold time and force is highly non-linear from which we deduce thermal consolidation is the controlling mechanism

    Qualitative features of periodic solutions of KdV

    Full text link
    In this paper we prove new qualitative features of solutions of KdV on the circle. The first result says that the Fourier coefficients of a solution of KdV in Sobolev space HN,N0H^N,\, N\geq 0, admit a WKB type expansion up to first order with strongly oscillating phase factors defined in terms of the KdV frequencies. The second result provides estimates for the approximation of such a solution by trigonometric polynomials of sufficiently large degree

    Fluctuation induced interactions between domains in membranes

    Full text link
    We study a model lipid bilayer composed of a mixture of two incompatible lipid types which have a natural tendency to segregate in the absence of membrane fluctuations. The membrane is mechanically characterized by a local bending rigidity κ(ϕ)\kappa(\phi) which varies with the average local lipid composition ϕ\phi. We show, in the case where κ\kappa varies weakly with ϕ\phi, that the effective interaction between lipids of the same type can either be everywhere attractive or can have a repulsive component at intermediate distances greater than the typical lipid size. When this interaction has a repulsive component, it can prevent macro-phase separation and lead to separation in mesophases with a finite domain size. This effect could be relevant to certain experimental and numerical observations of mesoscopic domains in such systems.Comment: 9 pages RevTex, 1 eps figur

    Existence of the Abrikosov vortex state in two-dimensional type-II superconductors without pinning

    Full text link
    Theory alternative to the vortex lattice melting theories is advertised. The vortex lattice melting theories are science fiction cond-mat/9811051 because the Abrikosov state is not the vortex lattice with crystalline long-range order. Since the fluctuation correction to the Abrikosov solution is infinite in the thermodynamic limit (K.Maki and H.Takayama, 1972) any fluctuation theory of the mixed state should consider a superconductor with finite sizes. Such nonperturbative theory for the easiest case of two-dimensional superconductor in the lowest Landau level approximation is presented in this work. The thermodynamic averages of the spatial average order parameter and of the Abrikosov parameter βa\beta_{a} are calculated. It is shown that the position H_{c4} of the transition into the Abrikosov state (i.e. in the mixed state with long-range phase coherence) depends strongly on sizes of two-dimensional superconductor. Fluctuations eliminate the Abrikosov vortex state in a wide region of the mixed state of thin films with real sizes and without pinning disorders, i.e. H_{c4} << H_{c2}. The latter has experimental corroboration in Phys.Rev.Lett. 75, 2586 (1995).Comment: 4 pages, 0 figure

    The effect of ice rubble on ice-ice sliding

    Get PDF
    Ice deformation processes in the Arctic can generate ice rubble. Many situations arise where ice fragments of varying size separate sea ice floes. While the shear forces between sea ice floes in direct contact with each other are controlled by ice-ice friction, what is not known is how the slip of the floes is affected by the presence of rubble between the sliding surfaces. We present the result of field experiments undertaken on sea ice in the Barents Sea. A double-direct-shear experiment was done on floating sea ice in the field, with the addition of rubble ice between the sliding surfaces. This was achieved by pulling a floating ice block through a cut channel of open water 3m long, where broken ice filled the gap between the block and the channel sides. The displacement of the block and the force needed to move the block were measured. The time that the block was held motionless to allow the rubble to consolidate was recorded - this ranged from seconds to several hours. We found that the 'hold time' controls the maximum force needed to move the block. The relation between hold time and force is highly non-linear from which we deduce thermal consolidation is the controlling mechanism
    corecore