73 research outputs found

    Zinc oxide as an ozone sensor

    Get PDF
    Journal of Applied Physics, Vol. 96, nº3This work presents a study of intrinsic zinc oxide thin film as ozone sensor based on the ultraviolet sUVd photoreduction and subsequent ozone re oxidation of zinc oxide as a fully reversible process performed at room temperature. The films analyzed were produced by spray pyrolysis, dc and rf magnetron sputtering. The dc resistivity of the films produced by rf magnetron sputtering and constituted by nanocrystallites changes more than eight orders of magnitude when exposed to an UV dose of 4 mW/cm2. On the other hand, porous and textured zinc oxide films produced by spray pyrolysis at low substrate temperature exhibit an excellent ac impedance response where the reactance changes by more than seven orders of magnitude when exposed to the same UV dose, with a response frequency above 15 kHz, thus showing improved ozone ac sensing discrimination

    TNF autovaccination induces self anti-TNF antibodies and inhibits metastasis in a murine melanoma model

    Get PDF
    TNF is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases, but also in metastasis in certain types of cancer. In terms of therapy, TNF is targeted by anti-TNF neutralising monoclonal antibodies or soluble TNF receptors. Recently, a novel strategy based on the generation of self anti-TNF antibodies (TNF autovaccination) has been developed. We have previously shown that TNF autovaccination successfully generates high anti-TNF antibody titres, blocks TNF and ameliorates collagen-induced arthritis in DBA/1 mice. In this study, we examined the ability of TNF autovaccination to generate anti-TNF antibody titres and block metastasis in the murine B16F10 melanoma model. We found that immunisation of C57BL/6 mice with TNF autovaccine produces a 100-fold antibody response to TNF compared to immunisation with phosphate-buffered saline vehicle control and significantly reduces both the number (P<0.01) and size of metastases (P<0.01) of B16F10 melanoma cells. This effect is also observed when an anti-TNF neutralising monoclonal antibody is administered, confirming the essential role TNF plays in metastasis in this model. This study suggests that TNF autovaccination is a cheaper and highly efficient alternative that can block TNF and reduce metastasis in vivo and trials with TNF autovaccination are already underway in patients with metastatic cancer

    Spatio-temporal Models of Lymphangiogenesis in Wound Healing

    Full text link
    Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis), very few have been proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a markedly different process from angiogenesis, occurring at different times and in response to different chemical stimuli. Two main hypotheses have been proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic endothelial cells first pool in the wound region following the lymph flow and then, once sufficiently populated, start to form a network. Here we present two PDE models describing lymphangiogenesis according to these two different hypotheses. Further, we include the effect of advection due to interstitial flow and lymph flow coming from open capillaries. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from biological data. The models are then solved numerically and the results are compared with the available biological literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total

    Factor inhibiting HIF (FIH-1) promotes renal cancer cell survival by protecting cells from HIF-1α-mediated apoptosis.

    Get PDF
    BACKGROUND: Clear cell renal cell carcinoma (CCRCC) is the commonest form of kidney cancer. Up to 91% have biallelic inactivation of VHL, resulting in stabilisation of HIF-α subunits. Factor inhibiting HIF-1 is an enzyme that hydroxylates HIF-α subunits and prevents recruitment of the co-activator CBP/P300. An important question is whether FIH-1 controls HIF activity in CCRCC. METHODS: Human VHL defective CCRCC lines RCC10, RCC4 and 786-O were used to determine the role of FIH-1 in modulating HIF activity, using small interfering RNA knockdown, retroviral gene expression, quantitative RT-PCR, western blot analysis, Annexin V and propidium iodide labelling. RESULTS: Although it was previously suggested that FIH-1 is suppressed in CCRCC, we found that FIH-1 mRNA and protein are actually present at similar levels in CCRCC and normal kidney. The FIH-1 inhibition or knockdown in the VHL defective CCRCC lines RCC10 and RCC4 (which express both HIF-1α and HIF-2α) resulted in increased expression of HIF target genes. In the 786-O CCRCC cell line, which expresses only HIF-2α, FIH-1 attenuation showed no significant effect on expression of these genes; introduction of HIF-1α resulted in sensitivity of HIF targets to FIH-1 knockdown. In RCC4 and RCC10, knockdown of FIH-1 increased apoptosis. Suppressing HIF-1α expression in RCC10 prevented FIH-1 knockdown from increasing apoptosis. CONCLUSION: Our results support a unifying model in which HIF-1α has a tumour suppressor action in CCRCC, held in check by FIH-1. Inhibiting FIH-1 in CCRCC could be used to bias the HIF response towards HIF-1α and decrease tumour cell viability

    Genetic insights into the hypoxia-inducible factor (HIF) pathway.

    No full text
    The HIF system probably operates in all cells, in all metazoan organisms. The effects of genetic alterations in the main components of the pathway offer a very powerful way to delineate its function in normal biology and disease. With time it is likely that more subtle variations will be identified in human populations, which are likely to be important in disease susceptibility. © 2006 Elsevier Ltd. All rights reserved

    Angiogenesis as a therapeutic target in arthritis in 2011: learning the lessons of the colorectal cancer experience.

    No full text
    The paradigm of a therapy aimed at inhibiting the formation of blood vessels, which would consequentially deprive cells and tissues of oxygen and nutrients, was born from the concept pioneered by the late Judah Folkman that blood vessel formation is central to the progression and maintenance of diseases which involve cellular metabolism and tissue expansion, and cancer in particular. The prototype targeted angiogenesis inhibitor anti-vascular endothelial growth factor (VEGF) antibody bevacizumab was approved in 2004 for colorectal cancer, and has since been approved for other cancers. Rheumatoid arthritis (RA) is a chronic inflammatory disease, during which inflamed tissue invades and destroys cartilage and bone. The tissue expansion, invasion, expression of cytokines and growth factors and areas of hypoxia which are a feature of RA have resulted in the hypothesis that angiogenesis inhibition may also be beneficial in RA, drawing on the success of bevacizumab. This review focuses on our current understanding of the importance of angiogenesis in RA, and on the lessons which may be learnt from the clinical experiences of angiogenesis blockade, particularly in colorectal cancer
    • …
    corecore