240 research outputs found

    Measurement and comparison of individual external doses of high-school students living in Japan, France, Poland and Belarus -- the "D-shuttle" project --

    Full text link
    Twelve high schools in Japan (of which six are in Fukushima Prefecture), four in France, eight in Poland and two in Belarus cooperated in the measurement and comparison of individual external doses in 2014. In total 216 high-school students and teachers participated in the study. Each participant wore an electronic personal dosimeter "D-shuttle" for two weeks, and kept a journal of his/her whereabouts and activities. The distributions of annual external doses estimated for each region overlap with each other, demonstrating that the personal external individual doses in locations where residence is currently allowed in Fukushima Prefecture and in Belarus are well within the range of estimated annual doses due to the background radiation level of other regions/countries

    A novel DFP tripeptide motif interacts with the coagulation factor XI apple 2 domain

    Get PDF
    Factor XI (FXI) is the zymogen of FXIa, which cleaves FIX in the intrinsic pathway of coagulation. FXI is known to exist as a dimer and interacts with multiple proteins via its 4 apple domains in the “saucer section” of the enzyme; however, to date, no complex crystal structure has been described. To investigate protein interactions of FXI, a large random peptide library consisting of 106 to 107 peptides was screened for FXI binding, which identified a series of FXI binding motifs containing the signature Asp-Phe-Pro (DFP) tripeptide. Motifs containing this core tripeptide were found in diverse proteins, including the known ligand high-molecular-weight kininogen (HK), as well as the extracellular matrix proteins laminin and collagen V. To define the binding site on FXI, we determined the crystal structure of FXI in complex with the HK-derived peptide NPISDFPDT. This revealed the location of the DFP peptide bound to the FXI apple 2 domain, and central to the interaction, the DFP phenylalanine side-chain inserts into a major hydrophobic pocket in the apple 2 domain and the isoleucine occupies a flanking minor pocket. Two further structures of FXI in complex with the laminin-derived peptide EFPDFP and a DFP peptide from the random screen demonstrated binding in the same pocket, although in a slightly different conformation, thus revealing some flexibility in the molecular interactions of the FXI apple 2 domain. (Blood. 2016;00(00):1-9

    Xylitol gummy bear snacks: a school-based randomized clinical trial

    Get PDF
    Background: Habitual consumption of xylitol reduces mutans streptococci (MS) levels but the effect on Lactobacillus spp. is less clear. Reduction is dependent on daily dose and frequency of consumption. For xylitol to be successfully used in prevention programs to reduce MS and prevent caries, effective xylitol delivery methods must be identified. This study examines the response of MS, specifically S. mutans/sobrinus and Lactobacillus spp., levels to xylitol delivered via gummy bears at optimal exposures. Methods: Children, first to fifth grade (n = 154), from two elementary schools in rural Washington State, USA, were randomized to xylitol 15.6 g/day (X16, n = 53) or 11.7 g/day (X12, n = 49), or maltitol 44.7 g/ day (M45, n = 52). Gummy bear snacks were pre-packaged in unit-doses, labeled with ID numbers, and distributed three times/day during school hours. No snacks were sent home. Plaque was sampled at baseline and six weeks and cultured on modified Mitis Salivarius agar for S. mutans/sobrinus and Rogosa SL agar for Lactobacillus spp. enumeration. Results: There were no differences in S. mutans/sobrinus and Lactobacillus spp. levels in plaque between the groups at baseline. At six weeks, log10 S. mutans/sobrinus levels showed significant reductions for all groups (p = 0.0001): X16 = 1.13 (SD = 1.65); X12 = 0.89 (SD = 1.11); M45 = 0.91 (SD = 1.46). Reductions were not statistically different between groups. Results for Lactobacillus spp. were mixed. Group X16 and M45 showed 0.31 (SD = 2.35), and 0.52 (SD = 2.41) log10 reductions, respectively, while X12 showed a 0.11 (SD = 2.26) log10 increase. These changes were not significant. Post-study discussions with school staff indicated that it is feasible to implement an in-classroom gummy bear snack program. Parents are accepting and children willing to consume gummy bear snacks daily. Conclusion: Reductions in S. mutans/sobrinus levels were observed after six weeks of gummy bear snack consumption containing xylitol at 11.7 or 15.6 g/day or maltitol at 44.7 g/day divided in three exposures. Lactobacillus spp. levels were essentially unchanged in all groups. These results suggest that a xylitol gummy bear snack may be an alternative to xylitol chewing gum for dental caries prevention. Positive results with high dose maltitol limit the validity of xylitol findings. A larger clinical trial is needed to confirm the xylitol results. Trial registration: [ISRCTN63160504].Supported by Grant No. U54DE14254 from the National Institute of Dental and Craniofacial Research, and Grant No. 90YD0188 from the Office of Head Start

    Biology of Streptococcus mutans-Derived Glucosyltransferases: Role in Extracellular Matrix Formation of Cariogenic Biofilms

    Get PDF
    The importance of Streptococcus mutans in the etiology and pathogenesis of dental caries is certainly controversial, in part because excessive attention is paid to the numbers of S. mutans and acid production while the matrix within dental plaque has been neglected. S. mutans does not always dominate within plaque; many organisms are equally acidogenic and aciduric. It is also recognized that glucosyltransferases from S. mutans (Gtfs) play critical roles in the development of virulent dental plaque. Gtfs adsorb to enamel synthesizing glucans in situ, providing sites for avid colonization by microorganisms and an insoluble matrix for plaque. Gtfs also adsorb to surfaces of other oral microorganisms converting them to glucan producers. S. mutans expresses 3 genetically distinct Gtfs; each appears to play a different but overlapping role in the formation of virulent plaque. GtfC is adsorbed to enamel within pellicle whereas GtfB binds avidly to bacteria promoting tight cell clustering, and enhancing cohesion of plaque. GtfD forms a soluble, readily metabolizable polysaccharide and acts as a primer for GtfB. The behavior of soluble Gtfs does not mirror that observed with surface-adsorbed enzymes. Furthermore, the structure of polysaccharide matrix changes over time as a result of the action of mutanases and dextranases within plaque. Gtfs at distinct loci offer chemotherapeutic targets to prevent caries. Nevertheless, agents that inhibit Gtfs in solution frequently have a reduced or no effect on adsorbed enzymes. Clearly, conformational changes and reactions of Gtfs on surfaces are complex and modulate the pathogenesis of dental caries in situ, deserving further investigation
    corecore