13,238 research outputs found
Transition temperature of ferromagnetic semiconductors: a dynamical mean field study
We formulate a theory of doped magnetic semiconductors such as
GaMnAs which have attracted recent attention for their possible use
in spintronic applications. We solve the theory in the dynamical mean field
approximation to find the magnetic transition temperature as a function
of magnetic coupling strength and carrier density . We find that
is determined by a subtle interplay between carrier density and magnetic
coupling.Comment: 4 pages, 4 figure
Eigenvalue distribution of the Dirac operator at finite temperature with (2+1)-flavor dynamical quarks using the HISQ action
We report on the behavior of the eigenvalue distribution of the Dirac
operator in (2+1)-flavor QCD at finite temperature, using the HISQ action. We
calculate the eigenvalue density at several values of the temperature close to
the pseudocritical temperature. For this study we use gauge field
configurations generated on lattices of size with two light
quark masses corresponding to pion masses of about 160 and 115 MeV. We find
that the eigenvalue density below receives large contributions from
near-zero modes which become smaller as the temperature increases or the light
quark mass decreases. Moreover we find no clear evidence for a gap in the
eigenvalue density up to 1.1. We also analyze the eigenvalue density near
where it appears to show a power-law behavior consistent with what is
expected in the critical region near the second order chiral symmetry restoring
phase transition in the massless limit.Comment: 7 pages, 7 figures, talk presented at the XXIX International
Symposium on Lattice Field Theory, July 10-16 2011, Squaw Valley, Lake Tahoe,
California, US
An evolutionary model with Turing machines
The development of a large non-coding fraction in eukaryotic DNA and the
phenomenon of the code-bloat in the field of evolutionary computations show a
striking similarity. This seems to suggest that (in the presence of mechanisms
of code growth) the evolution of a complex code can't be attained without
maintaining a large inactive fraction. To test this hypothesis we performed
computer simulations of an evolutionary toy model for Turing machines, studying
the relations among fitness and coding/non-coding ratio while varying mutation
and code growth rates. The results suggest that, in our model, having a large
reservoir of non-coding states constitutes a great (long term) evolutionary
advantage.Comment: 16 pages, 7 figure
Giant tunnel magnetoresistance and high annealing stability in CoFeB/MgO/CoFeB magnetic tunnel junctions with synthetic pinned layer
We investigated the relationship between tunnel magnetoresistance (TMR) ratio
and the crystallization of CoFeB layers through annealing in magnetic tunnel
junctions (MTJs) with MgO barriers that had CoFe/Ru/CoFeB synthetic ferrimagnet
pinned layers with varying Ru spacer thickness (tRu). The TMR ratio increased
with increasing annealing temperature (Ta) and tRu, reaching 361% at Ta = 425C,
whereas the TMR ratio of the MTJs with pinned layers without Ru spacers
decreased at Ta over 325C. Ruthenium spacers play an important role in forming
an (001)-oriented bcc CoFeB pinned layer, resulting in a high TMR ratio through
annealing at high temperatures.Comment: 10 pages, 5 figures, submitted to Applied Physics Letter
Ab-initio transport theory for digital ferromagnetic heterostructures
MnAs/GaAs superlattices, made by -doping GaAs with Mn, are known as
digital ferromagnetic heterostructures. Here we present a theoretical density
functional study of the electronic, magnetic and transport properties of such
heterostructures. In the absence of intrinsic donors these systems show an half
metallic density of states, with an exchange interaction much stronger than
that of a random alloy with the same Mn concentration. {\it Ab initio}
ballistic transport calculations show that the carriers with energies close to
the Fermi energy are strongly confined within a few monolayers around the MnAs
plane. This strong confinement is responsible for the large exchange coupling.
Therefore the system can be described as a two dimensional half metal with
large conductance in the MnAs plane and small conductance in the perpendicular
direction
Optical Conductivity of Ferromagnetic Semiconductors
The dynamical mean field method is used to calculate the frequency and
temperature dependent conductivity of dilute magnetic semiconductors.
Characteristic qualitative features are found distinguishing weak,
intermediate, and strong carrier-spin coupling and allowing quantitative
determination of important parameters defining the underlying ferromagnetic
mechanism
Domain wall dynamics in a single CrO grain
Recently we have reported on the magnetization dynamics of a single CrO
grain studied by micro Hall magnetometry (P. Das \textit{et al.}, Appl. Phys.
Lett. \textbf{97} 042507, 2010). For the external magnetic field applied along
the grain's easy magnetization direction, the magnetization reversal takes
place through a series of Barkhausen jumps. Supported by micromagnetic
simulations, the ground state of the grain was found to correspond to a flux
closure configuration with a single cross-tie domain wall. Here, we report an
analysis of the Barkhausen jumps, which were observed in the hysteresis loops
for the external field applied along both the easy and hard magnetization
directions. We find that the magnetization reversal takes place through only a
few configuration paths in the free-energy landscape, pointing to a high purity
of the sample. The distinctly different statistics of the Barkhausen jumps for
the two field directions is discussed.Comment: JEMS Conference, to appear in J. Phys. Conf. Se
- …