13,238 research outputs found

    Transition temperature of ferromagnetic semiconductors: a dynamical mean field study

    Full text link
    We formulate a theory of doped magnetic semiconductors such as Ga1x_{1-x}Mnx_xAs which have attracted recent attention for their possible use in spintronic applications. We solve the theory in the dynamical mean field approximation to find the magnetic transition temperature TcT_c as a function of magnetic coupling strength JJ and carrier density nn. We find that TcT_c is determined by a subtle interplay between carrier density and magnetic coupling.Comment: 4 pages, 4 figure

    Eigenvalue distribution of the Dirac operator at finite temperature with (2+1)-flavor dynamical quarks using the HISQ action

    Full text link
    We report on the behavior of the eigenvalue distribution of the Dirac operator in (2+1)-flavor QCD at finite temperature, using the HISQ action. We calculate the eigenvalue density at several values of the temperature close to the pseudocritical temperature. For this study we use gauge field configurations generated on lattices of size 323×832^3 \times 8 with two light quark masses corresponding to pion masses of about 160 and 115 MeV. We find that the eigenvalue density below TcT_c receives large contributions from near-zero modes which become smaller as the temperature increases or the light quark mass decreases. Moreover we find no clear evidence for a gap in the eigenvalue density up to 1.1TcT_c. We also analyze the eigenvalue density near TcT_c where it appears to show a power-law behavior consistent with what is expected in the critical region near the second order chiral symmetry restoring phase transition in the massless limit.Comment: 7 pages, 7 figures, talk presented at the XXIX International Symposium on Lattice Field Theory, July 10-16 2011, Squaw Valley, Lake Tahoe, California, US

    An evolutionary model with Turing machines

    Full text link
    The development of a large non-coding fraction in eukaryotic DNA and the phenomenon of the code-bloat in the field of evolutionary computations show a striking similarity. This seems to suggest that (in the presence of mechanisms of code growth) the evolution of a complex code can't be attained without maintaining a large inactive fraction. To test this hypothesis we performed computer simulations of an evolutionary toy model for Turing machines, studying the relations among fitness and coding/non-coding ratio while varying mutation and code growth rates. The results suggest that, in our model, having a large reservoir of non-coding states constitutes a great (long term) evolutionary advantage.Comment: 16 pages, 7 figure

    Giant tunnel magnetoresistance and high annealing stability in CoFeB/MgO/CoFeB magnetic tunnel junctions with synthetic pinned layer

    Full text link
    We investigated the relationship between tunnel magnetoresistance (TMR) ratio and the crystallization of CoFeB layers through annealing in magnetic tunnel junctions (MTJs) with MgO barriers that had CoFe/Ru/CoFeB synthetic ferrimagnet pinned layers with varying Ru spacer thickness (tRu). The TMR ratio increased with increasing annealing temperature (Ta) and tRu, reaching 361% at Ta = 425C, whereas the TMR ratio of the MTJs with pinned layers without Ru spacers decreased at Ta over 325C. Ruthenium spacers play an important role in forming an (001)-oriented bcc CoFeB pinned layer, resulting in a high TMR ratio through annealing at high temperatures.Comment: 10 pages, 5 figures, submitted to Applied Physics Letter

    Ab-initio transport theory for digital ferromagnetic heterostructures

    Full text link
    MnAs/GaAs superlattices, made by δ\delta-doping GaAs with Mn, are known as digital ferromagnetic heterostructures. Here we present a theoretical density functional study of the electronic, magnetic and transport properties of such heterostructures. In the absence of intrinsic donors these systems show an half metallic density of states, with an exchange interaction much stronger than that of a random alloy with the same Mn concentration. {\it Ab initio} ballistic transport calculations show that the carriers with energies close to the Fermi energy are strongly confined within a few monolayers around the MnAs plane. This strong confinement is responsible for the large exchange coupling. Therefore the system can be described as a two dimensional half metal with large conductance in the MnAs plane and small conductance in the perpendicular direction

    Optical Conductivity of Ferromagnetic Semiconductors

    Full text link
    The dynamical mean field method is used to calculate the frequency and temperature dependent conductivity of dilute magnetic semiconductors. Characteristic qualitative features are found distinguishing weak, intermediate, and strong carrier-spin coupling and allowing quantitative determination of important parameters defining the underlying ferromagnetic mechanism

    Domain wall dynamics in a single CrO2_2 grain

    Full text link
    Recently we have reported on the magnetization dynamics of a single CrO2_2 grain studied by micro Hall magnetometry (P. Das \textit{et al.}, Appl. Phys. Lett. \textbf{97} 042507, 2010). For the external magnetic field applied along the grain's easy magnetization direction, the magnetization reversal takes place through a series of Barkhausen jumps. Supported by micromagnetic simulations, the ground state of the grain was found to correspond to a flux closure configuration with a single cross-tie domain wall. Here, we report an analysis of the Barkhausen jumps, which were observed in the hysteresis loops for the external field applied along both the easy and hard magnetization directions. We find that the magnetization reversal takes place through only a few configuration paths in the free-energy landscape, pointing to a high purity of the sample. The distinctly different statistics of the Barkhausen jumps for the two field directions is discussed.Comment: JEMS Conference, to appear in J. Phys. Conf. Se
    corecore