27 research outputs found
Capsid and Infectivity in Virus Detection
The spectacular achievements and elegance of viral RNA analyses have somewhat obscured the importance of the capsid in transmission of viruses via food and water. The capsid’s essential roles are protection of the RNA when the virion is outside the host cell and initiation of infection when the virion contacts a receptor on an appropriate host cell. Capsids of environmentally transmitted viruses are phenomenally durable. Fortuitous properties of the capsid include antigenicity, isoelectric point(s), sometimes hemagglutination, and perhaps others. These can potentially be used to characterize capsid changes that cause or accompany loss of viral infectivity and may be valuable in distinguishing native from inactivated virus when molecular detection methods are used
Critical Review of Norovirus Surrogates in Food Safety Research: Rationale for Considering Volunteer Studies
The inability to propagate human norovirus (NoV) or to clearly differentiate infectious from noninfectious virus particles has led to the use of surrogate viruses, like feline calicivirus (FCV) and murine norovirus-1 (MNV), which are propagatable in cell culture. The use of surrogates is predicated on the assumption that they generally mimic the viruses they represent; however, studies are proving this concept invalid. In direct comparisons between FCV and MNV, their susceptibility to temperatures, environmental and food processing conditions, and disinfectants are dramatically different. Differences have also been noted between the inactivation of NoV and its surrogates, thus questioning the validity of surrogates. Considerable research funding is provided globally each year to conduct surrogate studies on NoVs; however, there is little demonstrated benefit derived from these studies in regard to the development of virus inactivation techniques or food processing strategies. Human challenge studies are needed to determine which processing techniques are effective in reducing NoVs in foods. A major obstacle to clinical trials on NoVs is the perception that such trials are too costly and risky, but in reality, there is far more cost and risk in allowing millions of unsuspecting consumers to contract NoV illness each year, when practical interventions are only a few volunteer studies away. A number of clinical trials have been conducted, providing important insights into NoV inactivation. A shift in research priorities from surrogate research to volunteer studies is essential if we are to identify realistic, practical, and scientifically valid processing approaches to improve food safety
Chemical Addressability of Ultraviolet-Inactivated Viral Nanoparticles (VNPs)
. Thus, inactivation of the virus RNA genome is important for biosafety considerations, however the surface characteristics and chemical reactivity of the particles must be maintained in order to preserve chemical and structural functionality. were shown to maintain particle structure and chemical reactivity, and cellular binding properties were similar to CPMV-WT. applications
Ultraviolet Light Inactivation of Murine Norovirus and Human Norovirus GII: PCR May Overestimate the Persistence of Noroviruses Even When Combined with Pre-PCR Treatments
Transmission of gastroenteritis-causing noroviruses may be significant via contaminated surfaces. Measures for control, e.g. disinfection with ultraviolet irradiation (UV), are therefore necessary for interrupting this transmission. Human norovirus (HuNoV) GII.4 and Murine norovirus (MuNoV) were used to study the efficacy of UV for virus inactivation on dry glass surfaces. MuNoV inactivation was measured using viability assay and the reduction in viral RNA levels for both viruses using reverse transcription quantitative PCR (RT-QPCR). For each UV dose, two parallel sample groups were detected using RT-QPCR: one group was enzymatically pre-PCR treated with Pronase and RNAse enzymes, while the other was not treated enzymatically. In the viability assay, loss of infectivity and a 4-log reduction of MuNoV were observed when the viruses on glass slides were treated with a UV dose of 60 mJ/cm2 or higher. In the RT-QPCR assay, a steady 2-log decline of MuNoV and HuNoV RNA levels was observed when UV doses were raised from 0 to 150 mJ/cm2. A distinct difference in RNA levels of pretreated and non-pretreated samples was observed with UV doses of 450–1.8 × 103 mJ/cm2: the RNA levels of untreated samples remained over 1.0 × 10³ PCR units (pcr-u), while the RNA levels of enzyme-treated samples declined below 100 pcr-u. However, the data show a prominent difference between the persistence of MuNoV observed with the infectivity assay and that of viral RNA detected using RT-QPCR. Methods based on genome detection may overestimate norovirus persistence even when samples are pretreated before genome detection