50 research outputs found

    Development of an HIV-1 Specific Microbicide Using Caulobacter crescentus S-Layer Mediated Display of CD4 and MIP1α

    Get PDF
    The development of alternative strategies to prevent HIV infection is a global public health priority. Initial efforts in anti-HIV microbicide development have met with poor success as the strategies have relied on a non-specific mechanism of action. Here, we report the development of a microbicide aimed at specifically blocking HIV entry by displaying molecular components of the HIV/host cell attachment complex on the surface of Caulobacter crescentus, a harmless aquatic bacterium. This bacterium can be readily manipulated to present heterologous proteins at high density on its surface by genetic insertion into its crystalline surface layer protein [1], [2]. In separate constructions, we generated bacteria displaying domain 1 of CD4 and MIP1α. Each moiety reacted with specific antibodies by Western immunoblot and immuno-fluorescence microscopy. Microbicide functionality was assessed using an HIV pseudotype virus assay system representing Clade B subtypes. Bacteria displaying MIP1α reduced infectivity by 35–78% depending on the specific subtype while CD4 display reduced infection by as much as 56%. Combinations of both constructs reduced infectivity by nearly 98%. We demonstrated that HIV infection could be inhibited using a strategy aimed at HIV-specific molecular interactions with Caulobacter surface protein display, and that sufficient protein folding and conformation could be mimicked to bind and block entry. Further, this is the first demonstration that Caulobacter surface protein display may be a useful approach to preventing HIV infection or other viruses as a microbicide. We propose that this harmless bacterium, which is inexpensive to produce and formulate, might be suitable for topical applications as a viable alternative in the search for effective microbicides to counteract the world wide incidence of HIV infection

    MIF-induced stromal PKCβ/IL8 is essential in human acute myeloid leukemia

    Get PDF
    Acute myeloid leukemia (AML) cells exhibit a high level of spontaneous apoptosis when cultured in vitro but have a prolonged survival time in vivo, indicating that tissue microenvironment plays a critical role in promoting AML cell survival. In vitro studies have shown that bone marrow-mesenchymal stromal cells (BM-MSC) protect AML blasts from spontaneous and chemotherapy-induced apoptosis. Here we report a novel interaction between AML blasts and BM-MSC which benefits AML proliferation and survival. We initially examined the cytokine profile in cultured human AML compared to AML cultured with BMMSC and found that macrophage-migration inhibitory factor (MIF) was highly expressed by primary AML, and that interleukin-8 (IL-8) was increased in AML/BM-MSC co-cultures. Recombinant MIF increased IL-8 expression in BM-MSC via its receptor CD74. Moreover, the MIF inhibitor ISO-1 inhibited AML-induced IL-8 expression by BM-MSC as well as BMMSC- induced AML survival. Protein kinase C β (PKCβ) regulated MIF-induced IL-8 in BMMSC. Finally, targeted IL-8 shRNA inhibited BM-MSC-induced AML survival. These results describe a novel, bidirectional, pro-survival mechanism between AML blasts and BM-MSC. Furthermore, they provide biologic rationale for therapeutic strategies in AML targeting the microenvironment, specifically MIF and IL-8

    Age-dependent response of murine female bone marrow cells to hyperbaric oxygen

    Get PDF
    Consequences of age on the effects of hyperbaric oxygen (HBO) on bone marrow (BM) derived stem cells and progenitors (SCPs) are largely unknown. We treated 2- and 18-month old C57BL/6 female mice by HBO. Hematopoietic stem cells and progenitors, enumerated as colony-forming units in culture, were doubled only in peripheral leukocytes and BM cells of young mice receiving HBO. In old mice colony-forming unit fibroblast numbers, a measure of mesenchymal stromal cells (MSCs) from BM, were high but unaffected by HBO. To further explore this finding, in BM-MSCs we quantified the transcripts of adipocyte early-differentiation genes peroxisome proliferator-activated receptor-γ, CCAAT/enhancer binding protein-β and fatty-acid binding protein 4; these transcripts were not affected by age or HBO. However, osteoblast gene transcripts runt-related transcription factor 2, osterix (OSX) and alkaline phosphatase (AP) were twofold to 20-fold more abundant in MSCs from old control mice relative to those of young control mice. HBO affected expression of osteoblast markers only in old MSCs (OSX gene expression was reduced by twofold and AP expression was increased threefold). Our data demonstrate the impact of aging on the response of BM SCPs to HBO and indicate the potentially different age-related benefit of HBO in wound healing and tissue remodeling

    Anesthetic Propofol Reduces Endotoxic Inflammation by Inhibiting Reactive Oxygen Species-regulated Akt/IKKβ/NF-κB Signaling

    Get PDF
    BACKGROUND: Anesthetic propofol has immunomodulatory effects, particularly in the area of anti-inflammation. Bacterial endotoxin lipopolysaccharide (LPS) induces inflammation through toll-like receptor (TLR) 4 signaling. We investigated the molecular actions of propofol against LPS/TLR4-induced inflammatory activation in murine RAW264.7 macrophages. METHODOLOGY/PRINCIPAL FINDINGS: Non-cytotoxic levels of propofol reduced LPS-induced inducible nitric oxide synthase (iNOS) and NO as determined by western blotting and the Griess reaction, respectively. Propofol also reduced the production of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-10 as detected by enzyme-linked immunosorbent assays. Western blot analysis showed propofol inhibited LPS-induced activation and phosphorylation of IKKβ (Ser180) and nuclear factor (NF)-κB (Ser536); the subsequent nuclear translocation of NF-κB p65 was also reduced. Additionally, propofol inhibited LPS-induced Akt activation and phosphorylation (Ser473) partly by reducing reactive oxygen species (ROS) generation; inter-regulation that ROS regulated Akt followed by NF-κB activation was found to be crucial for LPS-induced inflammatory responses in macrophages. An in vivo study using C57BL/6 mice also demonstrated the anti-inflammatory properties against LPS in peritoneal macrophages. CONCLUSIONS/SIGNIFICANCE: These results suggest that propofol reduces LPS-induced inflammatory responses in macrophages by inhibiting the interconnected ROS/Akt/IKKβ/NF-κB signaling pathways

    Analysis of the cell surface layer ultrastructure of the oral pathogen Tannerella forsythia

    Get PDF
    The Gram-negative oral pathogen Tannerella forsythia is decorated with a 2D crystalline surface (S-) layer, with two different S-layer glycoprotein species being present. Prompted by the predicted virulence potential of the S-layer, this study focused on the analysis of the arrangement of the individual S-layer glycoproteins by a combination of microscopic, genetic, and biochemical analyses. The two S-layer genes are transcribed into mRNA and expressed into protein in equal amounts. The S-layer was investigated on intact bacterial cells by transmission electron microscopy, by immune fluorescence microscopy, and by atomic force microscopy. The analyses of wild-type cells revealed a distinct square S-layer lattice with an overall lattice constant of 10.1 ± 0.7 nm. In contrast, a blurred lattice with a lattice constant of 9.0 nm was found on S-layer single-mutant cells. This together with in vitro self-assembly studies using purified (glyco)protein species indicated their increased structural flexibility after self-assembly and/or impaired self-assembly capability. In conjunction with TEM analyses of thin-sectioned cells, this study demonstrates the unusual case that two S-layer glycoproteins are co-assembled into a single S-layer. Additionally, flagella and pilus-like structures were observed on T. forsythia cells, which might impact the pathogenicity of this bacterium

    A Murine Model of Persistent Inflammation, Immune Suppression, and Catabolism Syndrome

    No full text
    Critically ill patients that survive sepsis can develop a Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS), which often leads to extended recovery periods and multiple complications. Here, we utilized a cecal ligation and puncture (CLP) method in mice with the goal of creating a model that concurrently displays all the characteristics of PICS. We observed that, after eight days, mice that survive the CLP develop persistent inflammation with significant myelopoiesis in the bone marrow and spleen. These mice also demonstrate ongoing immune suppression, as evidenced by the decreased total and naïve splenic CD4 and CD8 T cells with a concomitant increase in immature myeloid cells. The mice further display significant weight loss and decreased muscle mass, indicating a state of ongoing catabolism. When PICS mice are challenged with intranasal Pseudomonas aeruginosa, mortality is significantly elevated compared to sham mice. This mortality difference is associated with increased bacterial loads in the lung, as well as impaired neutrophil migration and neutrophil dysfunction in the PICS mice. Altogether, we have created a sepsis model that concurrently exhibits PICS characteristics. We postulate that this will help determine the mechanisms underlying PICS and identify potential therapeutic targets to improve outcomes for this patient population
    corecore