7,901 research outputs found
Effect of disorder outside the CuO planes on of copper oxide superconductors
The effect of disorder on the superconducting transition temperature
of cuprate superconductors is examined. Disorder is introduced into the cation
sites in the plane adjacent to the CuO planes of two single-layer
systems, BiSrLnCuO and
LaNdSrCuO. Disorder is controlled by changing
rare earth (Ln) ions with different ionic radius in the former, and by varying
the Nd content in the latter with the doped carrier density kept constant. We
show that this type of disorder works as weak scatterers in contrast to the
in-plane disorder produced by Zn, but remarkably reduces suggesting
novel effects of disorder on high- superconductivity.Comment: 5 pages, 5 figures, to be published in Phys. Rev. Let
Recommended from our members
Antibiotic resistance evolved via inactivation of a ribosomal RNA methylating enzyme.
Modifications of the bacterial ribosome regulate the function of the ribosome and modulate its susceptibility to antibiotics. By modifying a highly conserved adenosine A2503 in 23S rRNA, methylating enzyme Cfr confers resistance to a range of ribosome-targeting antibiotics. The same adenosine is also methylated by RlmN, an enzyme widely distributed among bacteria. While RlmN modifies C2, Cfr modifies the C8 position of A2503. Shared nucleotide substrate and phylogenetic relationship between RlmN and Cfr prompted us to investigate evolutionary origin of antibiotic resistance in this enzyme family. Using directed evolution of RlmN under antibiotic selection, we obtained RlmN variants that mediate low-level resistance. Surprisingly, these variants confer resistance not through the Cfr-like C8 methylation, but via inhibition of the endogenous RlmN C2 methylation of A2503. Detection of RlmN inactivating mutations in clinical resistance isolates suggests that the mechanism used by the in vitro evolved variants is also relevant in a clinical setting. Additionally, as indicated by a phylogenetic analysis, it appears that Cfr did not diverge from the RlmN family but from another distinct family of predicted radical SAM methylating enzymes whose function remains unknown
Temporal relation between quiet-Sun transverse fields and the strong flows detected by IMaX/SUNRISE
Localized strongly Doppler-shifted Stokes V signals were detected by
IMaX/SUNRISE. These signals are related to newly emerged magnetic loops that
are observed as linear polarization features. We aim to set constraints on the
physical nature and causes of these highly Doppler-shifted signals. In
particular, the temporal relation between the appearance of transverse fields
and the strong Doppler shifts is analyzed in some detail. We calculated the
time difference between the appearance of the strong flows and the linear
polarization. We also obtained the distances from the center of various
features to the nearest neutral lines and whether they overlap or not. These
distances were compared with those obtained from randomly distributed points on
observed magnetograms. Various cases of strong flows are described in some
detail. The linear polarization signals precede the appearance of the strong
flows by on average 84+-11 seconds. The strongly Doppler-shifted signals are
closer (0.19") to magnetic neutral lines than randomly distributed points
(0.5"). Eighty percent of the strongly Doppler-shifted signals are close to a
neutral line that is located between the emerging field and pre-existing
fields. That the remaining 20% do not show a close-by pre-existing field could
be explained by a lack of sensitivity or an unfavorable geometry of the
pre-existing field, for instance, a canopy-like structure. Transverse fields
occurred before the observation of the strong Doppler shifts. The process is
most naturally explained as the emergence of a granular-scale loop that first
gives rise to the linear polarization signals, interacts with pre-existing
fields (generating new neutral line configurations), and produces the observed
strong flows. This explanation is indicative of frequent small-scale
reconnection events in the quiet Sun.Comment: 11 pages, 8 figure
Gauge-Higgs Unification and Quark-Lepton Phenomenology in the Warped Spacetime
In the dynamical gauge-Higgs unification of electroweak interactions in the
Randall-Sundrum warped spacetime the Higgs boson mass is predicted in the range
120 GeV -- 290 GeV, provided that the spacetime structure is determined at the
Planck scale. Couplings of quarks and leptons to gauge bosons and their
Kaluza-Klein (KK) excited states are determined by the masses of quarks and
leptons. All quarks and leptons other than top quarks have very small couplings
to the KK excited states of gauge bosons. The universality of weak interactions
is slightly broken by magnitudes of , and for
-, - and -, respectively. Yukawa couplings become
substantially smaller than those in the standard model, by a factor |\cos
\onehalf \theta_W| where is the non-Abelian Aharonov-Bohm phase
(the Wilson line phase) associated with dynamical electroweak symmetry
breaking.Comment: 34 pages, 7 eps files, comments and a reference adde
Direct evaporative cooling of 41K into a Bose-Einstein condensate
We have investigated the collisional properties of 41K atoms at ultracold
temperature. To show the possibility to use 41K as a coolant, a Bose-Einstein
condensate of 41K atoms in the stretched state (F=2, m_F=2) was created for the
first time by direct evaporation in a magnetic trap. An upper bound of three
body loss coefficient for atoms in the condensate was determined to be 4(2)
10^{-29} cm -6 s-1. A Feshbach resonance in the F=1, m_F=-1 state was observed
at 51.42(5) G, which is in good agreement with theoretical prediction.Comment: 4 pages, 4 figure
The small-scale structure of photospheric convection retrieved by a deconvolution technique applied to Hinode/SP data
Solar granules are bright patterns surrounded by dark channels called
intergranular lanes in the solar photosphere and are a manifestation of
overshooting convection. Observational studies generally find stronger upflows
in granules and weaker downflows in intergranular lanes. This trend is,
however, inconsistent with the results of numerical simulations in which
downflows are stronger than upflows through the joint action of gravitational
acceleration/deceleration and pressure gradients. One cause of this discrepancy
is the image degradation caused by optical distortion and light diffraction and
scattering that takes place in an imaging instrument. We apply a deconvolution
technique to Hinode/SP data in an attempt to recover the original solar scene.
Our results show a significant enhancement in both, the convective upflows and
downflows, but particularly for the latter. After deconvolution, the up- and
downflows reach maximum amplitudes of -3.0 km/s and +3.0 km/s at an average
geometrical height of roughly 50 km, respectively. We found that the velocity
distributions after deconvolution match those derived from numerical
simulations. After deconvolution the net LOS velocity averaged over the whole
FOV lies close to zero as expected in a rough sense from mass balance.Comment: 32 pages, 13 figures, accepted for publication in Ap
Photometric Properties of Long-period Variables in the Large Magellanic Cloud
Approximately four thousand light curves of red variable stars in the LMC
were selected from the 2.3-years duration MOA database by a period analysis
using the Phase Dispersion Minimization method. Their optical features
(amplitudes, periodicities, position in CMD) were investigated. Stars with
large amplitues and high periodicities were distributed on the only one strip
amongst multiple structure on the LMC period-luminosity relation. In the CMD,
the five strips were located in the order of the period. The stars with
characterized light curves were also discussed.Comment: 8 pages, 5 figures, Proceeding of WS on Mass-Losing Pulsating Stars
and Their Circumstellar Matter, Sendai, Japa
- …