3,730 research outputs found

    Heat transport in turbulent Rayleigh-Benard convection: Effect of finite top- and bottom-plate conductivity

    Full text link
    We describe three apparatus, known as the large, medium, and small apparatus, used for high-precision measurements of the Nusselt number N as a function of the Rayleigh number R for cylindrical samples of fluid and present results illustrating the influence of the finite conductivity of the top and bottom plates on the heat transport in the fluid. We used water samples at a mean temperature of 40 degrees C (Prandtl number sigma = 4.4). The samples in the large apparatus had a diameter D of 49.69 cm and heights L = 116.33, 74.42, 50.61, and 16.52 cm. For the medium apparatus we had D = 24.81 cm, and L = 90.20 and 24.76 cm. The small apparatus contained a sample with D = 9.21 cm, and L = 9.52 cm. For each aspect ratio Gamma = D/L the data covered a range of a little over a decade of R. The maximum R = 10^12 with Nusselt numbers N = 600 was reached for Gamma = 0.43. Measurements were made with both Aluminum and Copper top and bottom plates of nominally identical size and shape. For the large and medium apparatus the results with Aluminum plates fall below those obtained with Copper plates, thus confirming qualitatively the prediction by Verzicco that plates of finite conductivity diminish the heat transport in the fluid. The Nusselt number N_infinity for plates with infinite conductivity was estimated by fitting simultaneously Aluminum- and Copper-plate data sets to an effective powerlaw for N_infinity multiplied by a correction factor f(X) = 1 - exp[-(aX)^b] that depends on the ratio X of the thermal resistance of the fluid to that of the plates as suggested by Verzicco. Within their uncertainties the parameters a and b were independent of Gamma for the large apparatus and showed a small Gamma-dependence for the medium apparatus. The correction was larger for the large, smaller for the medium, and negligible for the small apparatus.Comment: 35 pages, 11 figures. Under consideration for publication in Phys. of Fluid

    Preparation and characterization of Bi26–2xMn2xMo10O69-d and Bi26.4Mn0.6Mo10–2yMe2yO69-d(Me = V, Fe) solid solutions

    Get PDF
    Received: 06.06.2017; accepted: 23.06.2017; published: 14.07.2017.Single phase samples of bismuth molybdate, Bi26Mo10O69, doped with Mn on the bismuth sublattice and V, Fe on the molybdenum sublattice were found to crystallize in the triclinic Bi26Mo10O69 structure at low doping levels and in the monoclinic Bi26Mo10O69 structure - at higher dopant concentration. The assumption that all Mn ions have an oxidation state of +2 was confirmed by means of magnetic measurement results analysis using Curie-Weiss law. Conductivity was investigated using impedance spectroscopy. The conductivity of Bi26.4Mn0.6Mo9.6Fe0.4O69-d was 1.2*10-2 S*cm-1 at 973 K and 2.2*10-4 S*cm-1 at 623 K, and the conductivity of Bi26.4Mn0.6Mo9.2V0.8O69-d was 2.2*10-3 S*cm-1 at 973 K and 2.2*10-5 S*cm-1 at 623 K

    Winkle: Foiling Long-Range Attacks in Proof-of-Stake Systems

    Get PDF
    Winkle protects any validator-based byzantine fault tolerant consensus mechanisms, such as those used in modern Proof-of-Stake blockchains, against long-range attacks where old validators' signature keys get compromised. Winkle is a decentralized secondary layer of client-based validation, where a client includes a single additional field into a transaction that they sign: a hash of the previously sequenced block. The block that gets a threshold of signatures (confirmations) weighted by clients' coins is called a "confirmed"checkpoint. We show that under plausible and flexible security assumptions about clients the confirmed checkpoints can not be equivocated. We discuss how client key rotation increases security, how to accommodate for coins' minting and how delegation allows for faster checkpoints. We evaluate checkpoint latency experimentally using Bitcoin and Ethereum transaction graphs, with and without delegation of stake

    Overhauser effect in individual InP/GaInP dots

    Get PDF
    Sizable nuclear spin polarization is pumped in individual InP/GaInP dots in a wide range of external magnetic fields B_ext=0-5T by circularly polarized optical excitation. We observe nuclear polarization of up to ~40% at Bext=1.5T and corresponding to an Overhauser field of ~1.2T. We find a strong feedback of the nuclear spin on the spin pumping efficiency. This feedback, produced by the Overhauser field, leads to nuclear spin bi-stability at low magnetic fields of Bext=0.5-1.5T. We find that the exciton Zeeman energy increases markedly, when the Overhauser field cancels the external field. This counter-intuitive result is shown to arise from the opposite contribution of the electron and hole Zeeman splittings to the total exciton Zeeman energy

    Overhauser effect in individual InP/GaInP dots

    Full text link
    Sizable nuclear spin polarization is pumped in individual InP/GaInP dots in a wide range of external magnetic fields B_ext=0-5T by circularly polarized optical excitation. We observe nuclear polarization of up to ~40% at Bext=1.5T and corresponding to an Overhauser field of ~1.2T. We find a strong feedback of the nuclear spin on the spin pumping efficiency. This feedback, produced by the Overhauser field, leads to nuclear spin bi-stability at low magnetic fields of Bext=0.5-1.5T. We find that the exciton Zeeman energy increases markedly, when the Overhauser field cancels the external field. This counter-intuitive result is shown to arise from the opposite contribution of the electron and hole Zeeman splittings to the total exciton Zeeman energy

    Theory of impact interaction between potato bodies and rebounding conveyor

    Get PDF
    ArticleIn order to increase substantially the quality of the potato heap separation, it is necessary to carry out the theoretical substantiation of the spiral separator’s parameters with regard to the impact interaction between the product and the tools of the un it under the condition of not damaging the tubers. An equivalent schematic model of the impact interaction between a potato tuber and the surface of the rebounding conveyor has been devised. Taking into account the coefficient of restitution of the tuber’s velocity in case of an impact, new analytical expressions have been obtained for determining the magnitude and direction of the potato tuber’s velocity after the impact. They provided the basis for applying the principle of momentum at impact and obtainin g the analytical expressions that allow determining the impact impulse and impact force at the impact of the tuber on the surface of the rebounding conveyor and, eventually, the dynamic constraints on the permitted velocity of the tuber prior to the impact interaction under the condition of not damaging it. A new analytical mathematical model of the impact interaction of the potato tuber during the potato heap separation has been developed. On the basis of the obtained theoretical results, studies have been carried out on the rational kinematical parameters of the high - quality performance of the above - mentioned work process under the condition of keeping the potato tubers undamaged

    Theory of grain mixture particle motion during aspiration separation

    Get PDF
    The practice of separating grain mixtures with the use of the difference in the aerodynamic properties of their components has proved that the process of separating mixtures in the aspiration separator is the most promising one with regard to the improvement of quality and intensification of production. The authors have developed a new improved design of aspiration seed separators, in which the work process of separating seed material is performed with the use of vibration processes. In this seed material separator, the constant force air flow that acts on the sail members on the central pipe of the separator, when seeds are fed for processing, generates self-excited oscillations in the pipe, which produces centrifugal forces of inertia in the seed feeding system. As a result of the mentioned effect, the propelling force in the process under study substantially increases, accelerating the seeds of different fractions, which differ in their masses, to different velocities. The motion paths of the seed particles change accordingly, heavier particles moving closer to the vertical axis of the aspiration channel, which provides for increasing the efficiency of separation of the seeds of different fractions from each other. In this paper, a new mathematical model is developed for the motion of a seed mixture material particle in the operating space of the separator’s aspiration channel. The mathematical modelling of the process of vibration and aspiration separation has indicated that the separation of the motion paths of the medium and heavy fractions takes place within the range of 20–40 mm; the flying speed of the particles is equal to 3.2–8.0 m s–1, respectively; and their acceleration is equal to 1.8– 3.3 m s–2, which provides the necessary conditions for the accurate and high quality separation into the required fractions. In view of the found differences between the kinematic characteristics of the separated fractions of the grain mixture, the diameter of the pipeline for the medium fraction is to be within the range of 90–100 mm, for the heavy fraction – 50–70 mm

    Theory of retaining potato bodies during operation of spiral separator

    Get PDF
    ArticleThe increase of the efficiency and quality of performance of the work process of potato heap separation can be achieved by means of improving the design of the vibrational spiral separator and substantiating theoretically its rational parameters under the condition of eliminating damage to the potato tubers. An equivalent schematic model of the interaction between the potato tuber and the surface of the cantilever spiral springs has been devised. On the basis of the model, the kinematic characteristics of the tuber’s flight and its impact contact with the elastic surface of the over mounted rebounding conveyor have been investigated. A new analytical mathematical model of the potato tuber’s flight from the surface of the spiral separator and its subsequent encounter with the rebounding conveyor mounted above the spiral springs has been developed. New analytical dependences have been obtained for finding out the distance and height of the potato tuber’s flight to the point of impact contact as well as the trajectory equation fo r the travel to the said contact, which makes it possible to obtain the kinematic constraints imposed on the allowed rate of travel under the condition of not damaging the tuber. On the basis of the obtained analytical dependences, the kinematic parameters of the improved design of the spiral potato harvester separator in its interaction with a potato tuber under the condition of not damaging the latter have been investigated
    corecore