3,973 research outputs found
On model checking data-independent systems with arrays without reset
A system is data-independent with respect to a data type X iff the operations
it can perform on values of type X are restricted to just equality testing. The
system may also store, input and output values of type X. We study model
checking of systems which are data-independent with respect to two distinct
type variables X and Y, and may in addition use arrays with indices from X and
values from Y . Our main interest is the following parameterised model-checking
problem: whether a given program satisfies a given temporal-logic formula for
all non-empty nite instances of X and Y . Initially, we consider instead the
abstraction where X and Y are infinite and where partial functions with finite
domains are used to model arrays. Using a translation to data-independent
systems without arrays, we show that the u-calculus model-checking problem is
decidable for these systems. From this result, we can deduce properties of all
systems with finite instances of X and Y . We show that there is a procedure
for the above parameterised model-checking problem of the universal fragment of
the u-calculus, such that it always terminates but may give false negatives. We
also deduce that the parameterised model-checking problem of the universal
disjunction-free fragment of the u-calculus is decidable. Practical motivations
for model checking data-independent systems with arrays include verification of
memory and cache systems, where X is the type of memory addresses, and Y the
type of storable values. As an example we verify a fault-tolerant memory
interface over a set of unreliable memories.Comment: Appeared in Theory and Practice of Logic Programming, vol. 4, no.
5&6, 200
MHD Turbulence Revisited
Kraichnan (1965) proposed that MHD turbulence occurs as a result of
collisions between oppositely directed Alfv\'en wave packets. Recent work has
generated some controversy over the nature of non linear couplings between
colliding Alfv\'en waves. We find that the resolution to much of the confusion
lies in the existence of a new type of turbulence, intermediate turbulence, in
which the cascade of energy in the inertial range exhibits properties
intermediate between those of weak and strong turbulent cascades. Some
properties of intermediate MHD turbulence are: (i) in common with weak
turbulent cascades, wave packets belonging to the inertial range are long
lived; (ii) however, components of the strain tensor are so large that, similar
to the situation in strong turbulence, perturbation theory is not applicable;
(iii) the breakdown of perturbation theory results from the divergence of
neighboring field lines due to wave packets whose perturbations in velocity and
magnetic fields are localized, but whose perturbations in displacement are not;
(iv) 3--wave interactions dominate individual collisions between wave packets,
but interactions of all orders make comparable contributions to the
intermediate turbulent energy cascade; (v) successive collisions are correlated
since wave packets are distorted as they follow diverging field lines; (vi) in
common with the weak MHD cascade, there is no parallel cascade of energy, and
the cascade to small perpendicular scales strengthens as it reaches higher wave
numbers; (vii) For an appropriate weak excitation, there is a natural
progression from a weak, through an intermediate, to a strong cascade.Comment: 25 pages, to appear in The Astrophysical Journa
On the Dynamical Stability of the Solar System
A long-term numerical integration of the classical Newtonian approximation to
the planetary orbital motions of the full Solar System (sun + 8 planets),
spanning 20 Gyr, was performed. The results showed no severe instability
arising over this time interval. Subsequently, utilizing a bifurcation method
described by Jacques Laskar, two numerical experiments were performed with the
goal of determining dynamically allowed evolutions for the Solar System in
which the planetary orbits become unstable. The experiments yielded one
evolution in which Mercury falls onto the Sun at ~1.261Gyr from now, and
another in which Mercury and Venus collide in ~862Myr. In the latter solution,
as a result of Mercury's unstable behavior, Mars was ejected from the Solar
System at ~822Myr. We have performed a number of numerical tests that confirm
these results, and indicate that they are not numerical artifacts. Using
synthetic secular perturbation theory, we find that Mercury is destabilized via
an entrance into a linear secular resonance with Jupiter in which their
corresponding eigenfrequencies experience extended periods of commensurability.
The effects of general relativity on the dynamical stability are discussed. An
application of the bifurcation method to the outer Solar System (Jupiter,
Saturn, Uranus, and Neptune) showed no sign of instability during the course of
24Gyr of integrations, in keeping with an expected Uranian dynamical lifetime
of 10^(18) years.Comment: 37 pages, 18 figures, accepted for publication in the Astrophysical
Journa
Characterisation of two alcohol acyltransferases from kiwifruit (Actinidia spp.) reveals distinct substrate preferences.
Volatile esters are key compounds of kiwifruit flavour and are formed by alcohol acyltransferases that belong to the BAHD acyltransferase superfamily. Quantitative RT-PCR was used to screen kiwifruitderived expressed sequence tags with proposed acyltransferase function in order to select ripeningspecific sequences and test their involvement in alcohol acylation. The screening criterion was for at least 10-fold increased transcript accumulation in ripe compared with unripe kiwifruit and in response to ethylene. Recombinant expression in yeast revealed alcohol acyltransferase activity for Actinidia-derived AT1, AT16 and the phylogenetically distinct AT9, using various alcohol and acyl-CoA substrates. Functional characterisation of AT16 and AT9 demonstrated striking differences in their substrate preferences and apparent catalytic efficiencies ðV0 max K�1 m Þ. Thus revealing benzoyl-CoA:alcohol O-acyltransferase activity for AT16 and acetyl-CoA:alcohol O-acyltransferase activity for AT9. Both kiwifruit-derived enzymes displayed higher reaction rates with butanol compared with ethanol, even though ethanol is the main alcohol in ripe fruit. Since ethyl acetate and ethyl benzoate are major esters in ripe kiwifruit, we suggest that fruit characteristic volatile profiles result from a combination of substrate availability and specificity of individual alcohol acyltransferases
Social Balance on Networks: The Dynamics of Friendship and Enmity
How do social networks evolve when both friendly and unfriendly relations
exist? Here we propose a simple dynamics for social networks in which the sense
of a relationship can change so as to eliminate imbalanced triads--relationship
triangles that contains 1 or 3 unfriendly links. In this dynamics, a friendly
link changes to unfriendly or vice versa in an imbalanced triad to make the
triad balanced. Such networks undergo a dynamic phase transition from a steady
state to "utopia"--all friendly links--as the amount of network friendliness is
changed. Basic features of the long-time dynamics and the phase transition are
discussed.Comment: 16 pages, 11 figures, paper based on an invited talk at Dyonet06,
Dynamics on Complex Networks and Applications, Dresden, Germany, Feburary
200
The Heider balance - a continuous approach
The Heider balance (HB) is investigated in a fully connected graph of
nodes. The links are described by a real symmetric array r(i,j), i,j=1,...,N.
In a social group, nodes represent group members and links represent relations
between them, positive (friendly) or negative (hostile). At the balanced state,
r(i,j)r(j,k)r(k,i)>0 for all the triads (i,j,k). As follows from the structure
theorem of Cartwright and Harary, at this state the group is divided into two
subgroups, with friendly internal relations and hostile relations between the
subgroups. Here the system dynamics is proposed to be determined by a set of
differential equations. The form of equations guarantees that once HB is
reached, it persists. Also, for N=3 the dynamics reproduces properly the
tendency of the system to the balanced state. The equations are solved
numerically. Initially, r(i,j) are random numbers distributed around zero with
a symmetric uniform distribution of unit width. Calculations up to N=500 show
that HB is always reached. Time to get the balanced state varies with the
system size N as N^{-1/2}. The spectrum of relations, initially narrow, gets
very wide near HB. This means that the relations are strongly polarized. In our
calculations, the relations are limited to a given range around zero. With this
limitation, our results can be helpful in an interpretation of somestatistical
data.Comment: 9 pages, 4 figures. Int. J. Mod. Phys. C (2005), in prin
Identifying Target Populations for Screening or Not Screening Using Logic Regression
Colorectal cancer remains a significant public health concern despite the fact that effective screening procedures exist and that the disease is treatable when detected at early stages. Numerous risk factors for colon cancer have been identified, but none are very predictive alone. We sought to determine whether there are certain combinations of risk factors that distinguish well between cases and controls, and that could be used to identify subjects at particularly high or low risk of the disease to target screening. Using data from the Seattle site of the Colorectal Cancer Family Registry (C-CFR), we fit logic regression models to combine risk factor information. Logic regression is a methodology that identifies subsets of the population, described by Boolean combinations of binary coded risk factors. This method is well suited to situations in which interactions between many variables result in differences in disease risk. Neither the logic regression models nor stepwise logistic regression models fit for comparison resulted in criteria that could be used to direct subjects to screening. However, we believe that our novel statistical approach could be useful in settings where risk factors do discriminate between cases and controls, and illustrate this with a simulated dataset
SMaSH: A Benchmarking Toolkit for Human Genome Variant Calling
Motivation: Computational methods are essential to extract actionable
information from raw sequencing data, and to thus fulfill the promise of
next-generation sequencing technology. Unfortunately, computational tools
developed to call variants from human sequencing data disagree on many of their
predictions, and current methods to evaluate accuracy and computational
performance are ad-hoc and incomplete. Agreement on benchmarking variant
calling methods would stimulate development of genomic processing tools and
facilitate communication among researchers.
Results: We propose SMaSH, a benchmarking methodology for evaluating human
genome variant calling algorithms. We generate synthetic datasets, organize and
interpret a wide range of existing benchmarking data for real genomes, and
propose a set of accuracy and computational performance metrics for evaluating
variant calling methods on this benchmarking data. Moreover, we illustrate the
utility of SMaSH to evaluate the performance of some leading single nucleotide
polymorphism (SNP), indel, and structural variant calling algorithms.
Availability: We provide free and open access online to the SMaSH toolkit,
along with detailed documentation, at smash.cs.berkeley.edu
- …