27 research outputs found
Composite-type Rb-87 optical-pumping light source for the rubidium frequency standard
The light source is composed of a cylindrical Rb-87 lamp 10 mm diameter and a Rb-85 filter cell 3-7 mm long attached to the front flat face of the lamp. This composite type device is operated in an oven at about 100 C. Thus a light source for Rb-87 hyperfine optical pumping less than 4 cm long by 3 cm diameter was constructed
Exotic heavy-fermion superconductivity in atomically thin CeCoIn5 films
Funding: This work is supported by Grants-in-Aid for Scientific Research (KAKENHI) (Grants No. JP18H01180, No. JP18H05227, and No. JP18K03511) from Japan Society for the Promotion of Science (JSPS), and by Core Research for Evolutional Science and Technology (CREST) (Grant No. JP-MJCR19T5) from Japan Science and Technology Agency (JST).We report an in situ scanning tunneling microscopy study of atomically thin films of CeCoIn5, a d-wave heavy-fermion superconductor. Both hybridization and superconducting gaps are observed even in monolayer CeCoIn5, providing direct evidence of superconductivity of heavy quasiparticles mediated by purely two-dimensional bosonic excitations. In these atomically thin films, Tc is suppressed to nearly half of the bulk, but is similar to CeCoIn5/YbCoIn5 superlattices containing CeCoIn5 layers with the same thickness as the thin films. Remarkably, the out-of-plane upper critical field μ0Hc2⊥ at zero temperature is largely enhanced from those of bulk and superlattices. The enhanced Hc2⊥ well exceeds the Pauli and bulk orbital limits, suggesting the possible emergence of unusual superconductivity with parity mixing caused by the inversion symmetry breaking.Publisher PDFPeer reviewe
Evidence for a finite-momentum Cooper pair in tricolor d-wave superconducting superlattices
人工超格子によるらせん型超伝導状態の創出とその検出に成功--有限運動量の電子対を持つ超伝導--.京都大学プレスリリース. 2024-05-13.Fermionic superfluidity with a nontrivial Cooper-pairing, beyond the conventional Bardeen-Cooper-Schrieffer state, is a captivating field of study in quantum many-body systems. In particular, the search for superconducting states with finite-momentum pairs has long been a challenge, but establishing its existence has long suffered from the lack of an appropriate probe to reveal its momentum. Recently, it has been proposed that the nonreciprocal electron transport is the most powerful probe for the finite-momentum pairs, because it directly couples to the supercurrents. Here we reveal such a pairing state by the non-reciprocal transport on tricolor superlattices with strong spin-orbit coupling combined with broken inversion-symmetry consisting of atomically thin d-wave superconductor CeCoIn5. We find that while the second-harmonic resistance exhibits a distinct dip anomaly at the low-temperature ()/high-magnetic field () corner in the -plane for applied to the antinodal direction of the d-wave gap, such an anomaly is absent for along the nodal direction. By carefully isolating extrinsic effects due to vortex dynamics, we reveal the presence of a non-reciprocal response originating from intrinsic superconducting properties characterized by finite-momentum pairs. We attribute the high-field state to the helical superconducting state, wherein the phase of the order parameter is spontaneously spatially modulated