15 research outputs found

    Aromatic L-Amino Acid Decarboxylase Deficiency Is a Cause of Long-Fasting Hypoglycemia

    Get PDF
    Objective/Context: Long-fasting hypoglycemia in children may be induced by neurotransmitter disorders. Case Report: A 5-year-old girl with a medical history of chronic diarrhea presented three episodes of severe hypoglycemia (20 mg/dL) between ages 3 and 5 years. She became pale and sweaty with hypothermia (33.5°C), bradycardia (45 bpm), and acidosis and presented a generalized seizure. During the 17-hour fast test performed to determine the etiology of her hypoglycemia, insulin and C-peptide were appropriately low, and human GH, IGF-I, cortisol, amino acids, and acylcarnitines were in the usual range for fasting duration. However, the presence of vanillactic and vanilpyruvic acids in urine led us to investigate the metabolism of dopamine and serotonin in the cerebrospinal fluid. Indeed, these results indicated an aromatic L-amino acid decarboxylase deficiency that impairs the synthesis of serotonin, dopamine, and catecholamines. The diagnosis was confirmed by the low aromatic L-amino acid decarboxylase (AADC) enzyme activity in plasma (5 pmol/min/mL; reference value, 20–130) and the presence of two heterozygous mutations, c.97G>C (p.V33L, inherited from her father) and c.1385G>C (p.R462P, inherited from her mother) in the DCC gene. She was supplemented with pyridoxine and raw cornstarch (1 g/kg) at evening dinner to reduce the night fast. The episodes of hypoglycemia and the chronic diarrhea were suppressed. Conclusion: Here is the first case report of long-fasting hypoglycemia due to a nontypical AADC deficiency. Hypoglycemia was severe, but the other neurological clinical hallmarks present in AADC-deficient patients were mild to moderate. Thus, neurotransmitter disorders should be considered in any patients presenting hypoglycemia with urine excretion of vanillactic acid

    Interhemispheric coherence of EEG rhythms in children: Maturation and differentiation in corpus callosum dysgenesis

    No full text
    International audienceObjectives: To evaluate the evolution of interhemispheric coherences (ICo) in background and spindle frequency bands during childhood and use it to identify individuals with corpus callosum dysgenesis (CCd).Methods: A monocentric cohort of children aged from 0.25 to 15 years old, consisting of 13 children with CCd and 164 without, was analyzed. The ICo of background activity (ICOBckgrdA), sleep spindles (ICOspindles), and their sum (sICO) were calculated. The impact of age, gender, and CC status on the ICo was evaluated, and the sICO was used to discriminate children with or without CCd.Results: ICOBckgrdA, ICOspindles and sICO increased significantly with age without any effect of gender (p < 10-4), in both groups. The regression equations of the different ICo were stronger, with adjusted R2 values of 0.54, 0.35, and 0.57, respectively. The ICo was lower in children with CCd compared to those without CCd (p < 10-4 for all comparisons). The area under the precision recall curves for predicting CCd using sICO was 0.992 with 98.9 % sensitivity and 87.5 % specificity.Discussion: ICo of spindles and background activity evolve in parallel to brain maturation and depends on the integrity of the corpus callosum. sICO could be an effective diagnostic biomarker for screening children with interhemispheric dysfunction

    Severe neonatal episodic laryngospasm due to de novo SCN4A mutations: a new treatable disorder.

    No full text
    International audienceBACKGROUND: Myotonia is unusual in infants, and not well-known. METHODS: We describe neonatal life-threatening features of myotonia caused by de novo mutations in the muscle sodium channel gene SCN4A. RESULTS: Three male neonates initially displayed episodic laryngospasms, with face and limb myotonia appearing later. We found SCN4A de novo mutations in these neonates: p.Gly1306Glu in 2 unrelated cases and a novel mutation p.Ala799Ser in the third. Two patients survived their respiratory attacks and were efficiently treated by sodium channel blockers (mexiletine, carbamazepine) following diagnosis of myotonia. CONCLUSION: Severe neonatal episodic laryngospasm is a new phenotype caused by a sodium channelopathy, which can be alleviated by channel blockers
    corecore