2,080 research outputs found
Current algebra derivation of temperature dependence of hadron couplings with currents
The vector and the axial-vector meson couplings with the vector and the
axial-vector currents respectively at finite temperature have been obtained in
Ref. \cite{Mallik} by calculating all the relevant one-loop Feynman graphs with
vertices obtained from the effective chiral Lagrangian. On the other hand, the
same couplings were also derived in Ref.\cite{Ioffe1} by applying the method of
current algebra and the hypothesis of partial conservation of axial-vector
current (PCAC). The latter method appears to miss certain terms; in the case of
the vector meson coupling with the vector current, for example, a term
containing the coupling is missed. A similar situation would
also appear for the nucleon coupling with the nucleon current. In this note we
resolve these differences.Comment: 7 pages, 2 eps figure
The back reaction and the effective Einstein's equation for the Universe with ideal fluid cosmological perturbations
We investigate the back reaction of cosmological perturbations on the
evolution of the Universe using the renormalization group method. Starting from
the second order perturbed Einstein's equation, we renormalize a scale factor
of the Universe and derive the evolution equation for the effective scale
factor which includes back reaction due to inhomogeneities of the Universe. The
resulting equation has the same form as the standard Friedman-Robertson-Walker
equation with the effective energy density and pressure which represent the
back reaction effect.Comment: 16 pages, to appear in Phys. Rev.
Towards understanding broad degeneracy in non-strange mesons
The spectroscopic regularities of modern empirical data on the non-strange
mesons up to 2.4 GeV can be summarized as a systematic clustering of states
near certain values of energy. It is getting evident that some unknown
X-symmetry triggers the phenomenon. We review the experimental status of this
symmetry and recent theoretical attempts put forward for explanation of broad
degeneracy.Comment: Brief review, 16 pages, 1 figur
Evolution of Non-linear Fluctuations in Preheating after Inflation
We investigate the evolution of the non-linear long wavelength fluctuations
during preheating after inflation. By using the separate universe approach, the
temporal evolution of the power spectrum of the scalar fields and the curvature
variable is obtained numerically. We found that the amplitude of the large
scale fluctuations is suppressed after non-linear evolution during preheating.Comment: To be published in Class. Quantum Gra
Emergent electrodynamics from the Nambu model for spontaneous Lorentz symmetry breaking
After imposing the Gauss law constraint as an initial condition upon the
Hilbert space of the Nambu model, in all its generic realizations, we recover
QED in the corresponding non-linear gauge A_{\mu}A^{\mu}=n^{2}M^{2}. Our result
is non-perturbative in the parameter M for n^{2}\neq 0 and can be extended to
the n^{2}=0 case. This shows that in the Nambu model, spontaneous Lorentz
symmetry breaking dynamically generates gauge invariance, provided the Gauss
law is imposed as an initial condition. In this way electrodynamics is
recovered, with the photon being realized as the Nambu-Goldstone modes of the
spontaneously broken symmetry, which finally turns out to be non-observableComment: 17 page
Black ring formation in particle systems
It is known that the formation of apparent horizons with non-spherical
topology is possible in higher-dimensional spacetimes. One of these is the
black ring horizon with topology where is the spacetime
dimension number. In this paper, we investigate the black ring horizon
formation in systems with -particles. We analyze two kinds of system: the
high-energy -particle system and the momentarily-static -black-hole
initial data. In the high-energy particle system, we prove that the black ring
horizon does not exist at the instant of collision for any . But there
remains a possibility that the black ring forms after the collision and this
result is not sufficient. Because calculating the metric of this system after
the collision is difficult, we consider the momentarily-static -black-hole
initial data that can be regarded as a simplified -particle model and
numerically solve the black ring horizon that surrounds all the particles. Our
results show that there is the minimum particle number that is necessary for
the black ring formation and this number depends on . Although many particle
number is required in five-dimensions, is sufficient for the black ring
formation in the cases. The black ring formation becomes easier for
larger . We provide a plausible physical interpretation of our results and
discuss the validity of Ida and Nakao's conjecture for the horizon formation in
higher-dimensions. Finally we briefly discuss the probable methods of producing
the black rings in accelerators.Comment: 26 pages, 7 figure
Responses of quark condensates to the chemical potential
The responses of quark condensates to the chemical potential, as a function
of temperature T and chemical potential \mu, are calculated within the
Nambu--Jona-Lasinio (NJL) model. We compare our results with those from the
recent lattice QCD simulations [QCD-TARO Collaboration, Nucl. Phys. B (Proc.
Suppl.) 106, 462 (2002)]. The NJL model and lattice calculations show
qualitatively similar behavior, and they will be complimentary ways to study
hadrons at finite density. The behavior above T_c requires more elaborated
analyses.Comment: 3 pages, 2 figs, based on a contribution to the Prof. Osamu Miyamura
memorial symposium, Hiroshima University, Nov. 16-17, 2001; slightly revised,
accepted for publication in Physical Review
Pion photo- and electroproduction and the partially-conserved axial current
The relevance of the axial current for pion production processes off the
nucleon with real or virtual photons is revisited. Employing the hypothesis of
a partially conserved axial current (PCAC), it is shown that, when all of the
relevant contributions are taken into account, PCAC does not provide any
additional constraint for threshold production processes that goes beyond the
Goldberger-Treiman relation. In particular, it is shown that pion
electroproduction processes at threshold cannot be used to extract any
information regarding the weak axial form factor. The relationships found in
previous investigations are seen to be an accident of the approximations
usually made in this context.Comment: 4 pages, 3 figures; typos corrected; references updated; some
rewording; conclusions unchange
Back Reaction Problem in the Inflationary Universe
We investigate the back reaction of cosmological perturbations on an
inflationary universe using the renormalization-group method. The second-order
zero mode solution which appears by the nonlinearity of the Einstein equation
is regarded as a secular term of a perturbative expansion, we renormalized a
constant of integration contained in the background solution and absorbed the
secular term to this constant in a gauge-invariant manner. The resultant
renormalization-group equation describes the back reaction effect of
inhomogeneity on the background universe. For scalar type classical
perturbation, by solving the renormalization-group equation, we find that the
back reaction of the long wavelength fluctuation works as a positive spatial
curvature, and the short wavelength fluctuation works as a radiation fluid. For
the long wavelength quantum fluctuation, the effect of back reaction is
equivalent to a negative spatial curvature.Comment: 17 page
- âŠ