2,080 research outputs found

    Current algebra derivation of temperature dependence of hadron couplings with currents

    Get PDF
    The vector and the axial-vector meson couplings with the vector and the axial-vector currents respectively at finite temperature have been obtained in Ref. \cite{Mallik} by calculating all the relevant one-loop Feynman graphs with vertices obtained from the effective chiral Lagrangian. On the other hand, the same couplings were also derived in Ref.\cite{Ioffe1} by applying the method of current algebra and the hypothesis of partial conservation of axial-vector current (PCAC). The latter method appears to miss certain terms; in the case of the vector meson coupling with the vector current, for example, a term containing the ρωπ\rho\omega\pi coupling is missed. A similar situation would also appear for the nucleon coupling with the nucleon current. In this note we resolve these differences.Comment: 7 pages, 2 eps figure

    The back reaction and the effective Einstein's equation for the Universe with ideal fluid cosmological perturbations

    Get PDF
    We investigate the back reaction of cosmological perturbations on the evolution of the Universe using the renormalization group method. Starting from the second order perturbed Einstein's equation, we renormalize a scale factor of the Universe and derive the evolution equation for the effective scale factor which includes back reaction due to inhomogeneities of the Universe. The resulting equation has the same form as the standard Friedman-Robertson-Walker equation with the effective energy density and pressure which represent the back reaction effect.Comment: 16 pages, to appear in Phys. Rev.

    Towards understanding broad degeneracy in non-strange mesons

    Get PDF
    The spectroscopic regularities of modern empirical data on the non-strange mesons up to 2.4 GeV can be summarized as a systematic clustering of states near certain values of energy. It is getting evident that some unknown X-symmetry triggers the phenomenon. We review the experimental status of this symmetry and recent theoretical attempts put forward for explanation of broad degeneracy.Comment: Brief review, 16 pages, 1 figur

    Evolution of Non-linear Fluctuations in Preheating after Inflation

    Full text link
    We investigate the evolution of the non-linear long wavelength fluctuations during preheating after inflation. By using the separate universe approach, the temporal evolution of the power spectrum of the scalar fields and the curvature variable is obtained numerically. We found that the amplitude of the large scale fluctuations is suppressed after non-linear evolution during preheating.Comment: To be published in Class. Quantum Gra

    Emergent electrodynamics from the Nambu model for spontaneous Lorentz symmetry breaking

    Get PDF
    After imposing the Gauss law constraint as an initial condition upon the Hilbert space of the Nambu model, in all its generic realizations, we recover QED in the corresponding non-linear gauge A_{\mu}A^{\mu}=n^{2}M^{2}. Our result is non-perturbative in the parameter M for n^{2}\neq 0 and can be extended to the n^{2}=0 case. This shows that in the Nambu model, spontaneous Lorentz symmetry breaking dynamically generates gauge invariance, provided the Gauss law is imposed as an initial condition. In this way electrodynamics is recovered, with the photon being realized as the Nambu-Goldstone modes of the spontaneously broken symmetry, which finally turns out to be non-observableComment: 17 page

    Black ring formation in particle systems

    Full text link
    It is known that the formation of apparent horizons with non-spherical topology is possible in higher-dimensional spacetimes. One of these is the black ring horizon with S1×SD−3S^1\times S^{D-3} topology where DD is the spacetime dimension number. In this paper, we investigate the black ring horizon formation in systems with nn-particles. We analyze two kinds of system: the high-energy nn-particle system and the momentarily-static nn-black-hole initial data. In the high-energy particle system, we prove that the black ring horizon does not exist at the instant of collision for any nn. But there remains a possibility that the black ring forms after the collision and this result is not sufficient. Because calculating the metric of this system after the collision is difficult, we consider the momentarily-static nn-black-hole initial data that can be regarded as a simplified nn-particle model and numerically solve the black ring horizon that surrounds all the particles. Our results show that there is the minimum particle number that is necessary for the black ring formation and this number depends on DD. Although many particle number is required in five-dimensions, n=4n=4 is sufficient for the black ring formation in the D≄7D\ge 7 cases. The black ring formation becomes easier for larger DD. We provide a plausible physical interpretation of our results and discuss the validity of Ida and Nakao's conjecture for the horizon formation in higher-dimensions. Finally we briefly discuss the probable methods of producing the black rings in accelerators.Comment: 26 pages, 7 figure

    Responses of quark condensates to the chemical potential

    Get PDF
    The responses of quark condensates to the chemical potential, as a function of temperature T and chemical potential \mu, are calculated within the Nambu--Jona-Lasinio (NJL) model. We compare our results with those from the recent lattice QCD simulations [QCD-TARO Collaboration, Nucl. Phys. B (Proc. Suppl.) 106, 462 (2002)]. The NJL model and lattice calculations show qualitatively similar behavior, and they will be complimentary ways to study hadrons at finite density. The behavior above T_c requires more elaborated analyses.Comment: 3 pages, 2 figs, based on a contribution to the Prof. Osamu Miyamura memorial symposium, Hiroshima University, Nov. 16-17, 2001; slightly revised, accepted for publication in Physical Review

    Pion photo- and electroproduction and the partially-conserved axial current

    Get PDF
    The relevance of the axial current for pion production processes off the nucleon with real or virtual photons is revisited. Employing the hypothesis of a partially conserved axial current (PCAC), it is shown that, when all of the relevant contributions are taken into account, PCAC does not provide any additional constraint for threshold production processes that goes beyond the Goldberger-Treiman relation. In particular, it is shown that pion electroproduction processes at threshold cannot be used to extract any information regarding the weak axial form factor. The relationships found in previous investigations are seen to be an accident of the approximations usually made in this context.Comment: 4 pages, 3 figures; typos corrected; references updated; some rewording; conclusions unchange

    Back Reaction Problem in the Inflationary Universe

    Full text link
    We investigate the back reaction of cosmological perturbations on an inflationary universe using the renormalization-group method. The second-order zero mode solution which appears by the nonlinearity of the Einstein equation is regarded as a secular term of a perturbative expansion, we renormalized a constant of integration contained in the background solution and absorbed the secular term to this constant in a gauge-invariant manner. The resultant renormalization-group equation describes the back reaction effect of inhomogeneity on the background universe. For scalar type classical perturbation, by solving the renormalization-group equation, we find that the back reaction of the long wavelength fluctuation works as a positive spatial curvature, and the short wavelength fluctuation works as a radiation fluid. For the long wavelength quantum fluctuation, the effect of back reaction is equivalent to a negative spatial curvature.Comment: 17 page
    • 

    corecore