323 research outputs found
Astro2020 Project White Paper: The Cosmic Accelerometer
We propose an experiment, the Cosmic Accelerometer, designed to yield
velocity precision of cm/s with measurement stability over years to
decades. The first-phase Cosmic Accelerometer, which is at the scale of the
Astro2020 Small programs, will be ideal for precision radial velocity
measurements of terrestrial exoplanets in the Habitable Zone of Sun-like stars.
At the same time, this experiment will serve as the technical pathfinder and
facility core for a second-phase larger facility at the Medium scale, which can
provide a significant detection of cosmological redshift drift on a 6-year
timescale. This larger facility will naturally provide further detection/study
of Earth twin planet systems as part of its external calibration process. This
experiment is fundamentally enabled by a novel low-cost telescope technology
called PolyOculus, which harnesses recent advances in commercial off the shelf
equipment (telescopes, CCD cameras, and control computers) combined with a
novel optical architecture to produce telescope collecting areas equivalent to
standard telescopes with large mirror diameters. Combining a PolyOculus array
with an actively-stabilized high-precision radial velocity spectrograph
provides a unique facility with novel calibration features to achieve the
performance requirements for the Cosmic Accelerometer
Interplay of superexchange and orbital degeneracy in Cr-doped LaMnO3
We report on structural, magnetic and Electron Spin Resonance (ESR)
investigations in the manganite system LaMn_{1-x}Cr_{x}O_{3} (x<=0.5). Upon
Cr-doping we observe a reduction of the Jahn-Teller distortion yielding less
distorted orthorhombic structures. A transition from the Jahn-Teller distorted
O' to the pseudocubic O phase occurs between 0.3<x<0.4. A clear connection
between this transition and the doping dependence of the magnetic and ESR
properties has been observed. The effective moments determined by ESR seem
reduced with respect to the spin-only value of both Mn^{3+} and Cr^{3+} ions
Supranormal orientation selectivity of visual neurons in orientation-restricted animals
Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure
S-PLUS DR1 galaxy clusters and groups catalogue using PzWav
We present a catalogue of 4499 groups and clusters of galaxies from the first
data release of the multi-filter (5 broad, 7 narrow) Southern Photometric Local
Universe Survey (S-PLUS). These groups and clusters are distributed over 273
deg in the Stripe 82 region. They are found using the PzWav algorithm,
which identifies peaks in galaxy density maps that have been smoothed by a
cluster scale difference-of-Gaussians kernel to isolate clusters and groups.
Using a simulation-based mock catalogue, we estimate the purity and
completeness of cluster detections: at S/N>3.3 we define a catalogue that is
80% pure and complete in the redshift range 0.1<z<0.4, for clusters with
M. We also assessed the accuracy of the catalogue
in terms of central positions and redshifts, finding scatter of
kpc and , respectively. Moreover, less than 1% of
the sample suffers from fragmentation or overmerging. The S-PLUS cluster
catalogue recovers ~80% of all known X-ray and Sunyaev-Zel'dovich selected
clusters in this field. This fraction is very close to the estimated
completeness, thus validating the mock data analysis and paving an efficient
way to find new groups and clusters of galaxies using data from the ongoing
S-PLUS project. When complete, S-PLUS will have surveyed 9300 deg of the
sky, representing the widest uninterrupted areas with narrow-through-broad
multi-band photometry for cluster follow-up studies.Comment: 17 pages, 15 figures, paper accepted for publication by MNRA
Strigolactones Negatively Regulate Mesocotyl Elongation in Rice during Germination and Growth in Darkness
Strigolactones (SLs) are newly discovered plant hormones that regulate plant growth and development including shoot branching. They also stimulate symbiosis with arbuscular mycorrhizal fungi. Rice has at least three genes that are involved in SL synthesis (D10, D17/HTD1 and D27) and at least two genes that are involved in SL signaling (D3) and SL signaling or downstream metabolism (D14/D88/HTD2). We observed that mesocotyl elongation in darkness was greater in rice mutants defective in these genes than in the wild type. Exogenous application of a synthetic SL analog, GR24, rescued the phenotype of mesocotyl elongation in the SL-deficient mutants, d10-1, d17-1 and d27-1, in a dose-dependent manner, but did not affect mesocotyl lengths of the SL-insensitive mutants, d3-1 and d14-1. No significant differences in cell length were found between the d mutants and the wild type, except for some cells on the lower half of the d3-1 mesocotyl that were shortened. On the other hand, the number of cells in the mesocotyls was 3- to 6-fold greater in the d mutants than in the wild type. Treatment with GR24 reduced the number of cells in the d10-1 mesocotyl to the wild-type level, but did not affect the number of cells in the d3-1 and d14-1 mesocotyls. These findings indicate that SLs negatively regulate cell division, but not cell elongation, in the mesocotyl during germination and growth of rice in darkness
High quality RNA isolation from Aedes aegypti midguts using laser microdissection microscopy
Background: Laser microdissection microscopy (LMM) has potential as a research tool because it allows precise excision of target tissues or cells from a complex biological specimen, and facilitates tissue-specific sample preparation. However, this method has not been used in mosquito vectors to date. To this end, we have developed an LMM method to isolate midgut RNA using Aedes aegypti
High-Throughput SuperSAGE for Digital Gene Expression Analysis of Multiple Samples Using Next Generation Sequencing
We established a protocol of the SuperSAGE technology combined with next-generation sequencing, coined “High-Throughput (HT-) SuperSAGE”. SuperSAGE is a method of digital gene expression profiling that allows isolation of 26-bp tag fragments from expressed transcripts. In the present protocol, index (barcode) sequences are employed to discriminate tags from different samples. Such barcodes allow researchers to analyze digital tags from transcriptomes of many samples in a single sequencing run by simply pooling the libraries. Here, we demonstrated that HT-SuperSAGE provided highly sensitive, reproducible and accurate digital gene expression data. By increasing throughput for analysis in HT-SuperSAGE, various applications are foreseen and several examples are provided in the present study, including analyses of laser-microdissected cells, biological replicates and tag extraction using different anchoring enzymes
- …