1,440 research outputs found

    Weak-Light Ultraslow Vector Optical Solitons via Electromagnetically Induced Transparency

    Full text link
    We propose a scheme to generate temporal vector optical solitons in a lifetime broadened five-state atomic medium via electromagnetically induced transparency. We show that this scheme, which is fundamentally different from the passive one by using optical fibers, is capable of achieving distortion-free vector optical solitons with ultraslow propagating velocity under very weak drive conditions. We demonstrate both analytically and numerically that it is easy to realize Manakov temporal vector solitons by actively manipulating the dispersion and self- and cross-phase modulation effects of the system.Comment: 4 pages, 4 figure

    Ultraslow light in inhomogeneously broadened media

    Get PDF
    We calculate the characteristics of ultraslow light in an inhomogeneously broadened medium. We present analytical and numerical results for the group delay as a function of power of the propagating pulse. We apply these results to explain the recently reported saturation behavior [Baldit {\it et al.}, \prl {\bf 95}, 143601 (2005)] of ultraslow light in rare earth ion doped crystal.Comment: 4 pages, 5 figure

    Stability of atomic clocks based on entangled atoms

    Full text link
    We analyze the effect of realistic noise sources for an atomic clock consisting of a local oscillator that is actively locked to a spin-squeezed (entangled) ensemble of NN atoms. We show that the use of entangled states can lead to an improvement of the long-term stability of the clock when the measurement is limited by decoherence associated with instability of the local oscillator combined with fluctuations in the atomic ensemble's Bloch vector. Atomic states with a moderate degree of entanglement yield the maximal clock stability, resulting in an improvement that scales as N1/6N^{1/6} compared to the atomic shot noise level.Comment: 4 pages, 2 figures, revtex

    Distributed Quantum Computation Based-on Small Quantum Registers

    Full text link
    We describe and analyze an efficient register-based hybrid quantum computation scheme. Our scheme is based on probabilistic, heralded optical connection among local five-qubit quantum registers. We assume high fidelity local unitary operations within each register, but the error probability for initialization, measurement, and entanglement generation can be very high (~5%). We demonstrate that with a reasonable time overhead our scheme can achieve deterministic non-local coupling gates between arbitrary two registers with very high fidelity, limited only by the imperfections from the local unitary operation. We estimate the clock cycle and the effective error probability for implementation of quantum registers with ion-traps or nitrogen-vacancy (NV) centers. Our new scheme capitalizes on a new efficient two-level pumping scheme that in principle can create Bell pairs with arbitrarily high fidelity. We introduce a Markov chain model to study the stochastic process of entanglement pumping and map it to a deterministic process. Finally we discuss requirements for achieving fault-tolerant operation with our register-based hybrid scheme, and also present an alternative approach to fault-tolerant preparation of GHZ states.Comment: 22 Pages, 23 Figures and 1 Table (updated references

    Legume reaction to soil acidity

    Get PDF
    Most legumes grow and develop better in neutral soils, with the exception of lupine, which grows at pH 4.0-5.0. Legumes are sensitive to the concentration of aluminium ions in the soi

    Nonlinear Optics and Quantum Entanglement of Ultra-Slow Single Photons

    Get PDF
    Two light pulses propagating with ultra-slow group velocities in a coherently prepared atomic gas exhibit dissipation-free nonlinear coupling of an unprecedented strength. This enables a single-photon pulse to coherently control or manipulate the quantum state of the other. Processes of this kind result in generation of entangled states of radiation field and open up new prospectives for quantum information processing

    Interferometric probes of many-body localization

    Get PDF
    We propose a method for detecting many-body localization (MBL) in disordered spin systems. The method involves pulsed, coherent spin manipulations that probe the dephasing of a given spin due to its entanglement with a set of distant spins. It allows one to distinguish the MBL phase from a non-interacting localized phase and a delocalized phase. In particular, we show that for a properly chosen pulse sequence the MBL phase exhibits a characteristic power-law decay reflecting its slow growth of entanglement. We find that this power-law decay is robust with respect to thermal and disorder averaging, provide numerical simulations supporting our results, and discuss possible experimental realizations in solid-state and cold atom systems.Comment: 5 pages, 4 figure

    Quantum memory for photons: I. Dark state polaritons

    Full text link
    An ideal and reversible transfer technique for the quantum state between light and metastable collective states of matter is presented and analyzed in detail. The method is based on the control of photon propagation in coherently driven 3-level atomic media, in which the group velocity is adiabatically reduced to zero. Form-stable coupled excitations of light and matter (``dark-state polaritons'') associated with the propagation of quantum fields in Electromagnetically Induced Transparency are identified, their basic properties discussed and their application for quantum memories for light analyzed.Comment: 13 pages, 6 figures, paragraph on photon echo adde
    corecore