9 research outputs found

    Recent human-specific spreading of a subtelomeric domain.

    No full text
    The recent spreading of a subtelomeric region at nine different human chromosome ends was characterized by a combination of segregation analyses, physical mapping, junction cloning, and FISH investigations. The events occurred very recently in human genome evolution as demonstrated by sequence analysis of different alleles and the single location of the ancestral site at chromosome 17qter in chimpanzee and orangutan. The domain successfully colonized most 1p, 5q, and 6q chromosome ends and is also present at a significant frequency of 6p, 7p, 8p, 11p, 15q, and 19p ends. On 6qter, the transposed domain is immediately distal to the highly conserved, single-copy gene PDCD2

    Analysis of distribution in the human, pig, and rat genomes points toward a general subtelomeric origin of minisatellite structures.

    No full text
    We have developed approaches for the cloning of minisatellites from total genomic libraries and applied these approaches to the human, rat, and pig genomes. The chromosomal distribution of minisatellites in the three genomes is strikingly different, with clustering at chromosome ends in human, a seemingly almost even distribution in rat, and an intermediate situation in pig. A closer analysis, however, reveals that interstitial sites in pig and rat often correspond to terminal cytogenetic bands in human. This observation suggests that minisatellites are created toward chromosome ends and their internalization represents secondary events resulting from rearrangements involving chromosome ends

    Ultratrace LC-MS/MS Analysis of Segmented Calf Hair for Retrospective Assessment of Time of Clenbuterol Administration in Agriforensics

    No full text
    In agriforensics, time of administration is often debated when illegal drug residues, such as clenbuterol, are found in frequently traded cattle. In this proof-of-concept work, the feasibility of obtaining retrospective timeline information from segmented calf tail hair analyses has been studied. First, an ultraperformance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) hair analysis method was adapted to accommodate smaller sample sizes and in-house validated. Then, longitudinal 1 cm segments of calf tail hair were analyzed to obtain clenbuterol concentration profiles. The profiles found were in good agreement with calculated, theoretical positions of the clenbuterol residues along the hair. Following assessment of the average growth rate of calf tail hair, time of clenbuterol administration could be retrospectively determined from segmented hair analysis data. The data from the initial animal treatment study (n = 2) suggest that time of treatment can be retrospectively estimated with an error of 3–17 days

    European Gene Mapping Project (EUROGEM): breakpoint panels for human chromosomes based on the CEPH reference families. Centre d'Etude du Polymorphisme Humain.

    No full text
    International audienceMeiotic breakpoint panels for human chromosomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17, 18, 20 and X were constructed from genotypes from the CEPH reference families. Each recombinant chromosome included has a breakpoint well-supported with reference to defined quantitative criteria. The panels were constructed at both a low-resolution, useful for a first-pass localization, and high-resolution, for a more precise placement. The availability of such panels will reduce the number of genotyping experiments necessary to order new polymorphisms with respect to existing genetic markers. This paper shows only a representative sample of the breakpoints detected. The complete data are available on the World Wide Web (URL http:/(/)www.icnet.uk/axp/hgr/eurogem++ +/HTML/data.html) or by anonymous ftp (ftp.gene.ucl.ac.uk in/pub/eurogem/maps/breakpoints)
    corecore