420 research outputs found

    Characterisation of Australian MRSA Strains ST75- and ST883-MRSA-IV and Analysis of Their Accessory Gene Regulator Locus

    Get PDF
    Background: Community-acquired methicillin-resistant Staphylococcus aureus have become a major problem in Australia. These strains have now been isolated throughout Australia including remote Indigenous communities that have had minimal exposure to healthcare facilities. Some of these strains, belonging to sequence types ST75 and ST883, have previously been reported to harbour highly divergent alleles of the housekeeping genes used in multilocus sequence typing. Methodology/Principal Findings: ST75-MRSA-IV and ST883-MRSA-IV isolates were characterised in detail. Morphological features as well as 16S sequences were identical to other S. aureus strains. Although a partial rnpB gene sequence was not identical to previously known S. aureus sequences, it was found to be more closely related to S. aureus than to other staphylococci. Isolates also were screened using diagnostic DNA microarrays. These isolates yielded hybridisation results atypical for S. aureus. Primer directed amplification assays failed to detect species markers (femA, katA, sbi, spa). However, arbitrarily primed amplification indicated the presence of unknown alleles of these genes. Isolates could not be assigned to capsule types 1, 5 or 8. The allelic group of the accessory gene regulator (agr) locus was not determinable. Sequencing of a region of agrB, agrC and agrD (approximately 2,100 bp) revealed a divergent sequence. However, this sequence is more related to S. aureus agr alleles I and IV than to agr sequences from other Staphylococcus species. The predicted autoinducing peptide (AIP) sequence of ST75 was identical to that of agr group I, while the predicted AIP sequence of ST883 was identical to agr group IV. Conclusions/Significance: The genetic properties of ST75/ST883-MRSA may be due to a series of evolutionary events in ancient insulated S. aureus strains including a convergent evolution leading to agr group I- or IV-like AIP sequences and a recent acquisition of SCCmec IV elements

    DNA microarray-based genotyping of methicillin-resistant Staphylococcus aureus strains from Eastern Saxony

    Get PDF
    ABSTRACTA diagnostic microarray was used to characterise a collection of methicillin-resistant Staphylococcus aureus (MRSA) isolates from hospitals in the German region of Eastern Saxony. The most abundant epidemic MRSA (EMRSA) strains were ST5-MRSA II (Rhine–Hesse EMRSA, EMRSA-3), CC5/ST228-MRSA I (South German EMRSA), ST22-MRSA IV (Barnim EMRSA, EMRSA-15) and ST45-MRSA IV (Berlin EMRSA). Other strains were found only as sporadic isolates or in minor outbreaks. These strains included ST1-MRSA IV, ST8-MRSA IV (Hannover EMRSA and others), clonal group 5 strains carrying SCCmec type IV elements (Paediatric clone), ST45-MRSA V, CC8/ST239-MRSA III and ST398-MRSA V. Panton–Valentine leukocidin-positive MRSA isolates were still very rare. The predominant strain was ST80-MRSA IV, although increasing numbers of different strains have recently been detected (ST8-MRSA IV, ST30-MRSA IV and ST59-MRSA V). For more common MRSA strains, it was possible to detect variants that differed mainly in the carriage of additional resistance determinants and certain virulence-associated genes. Detection of such variants can sometimes allow epidemic strains to be resolved beyond spa types to a hospital-specific level, which is of significant value for epidemiological purposes

    Genome sequencing and molecular characterisation of Staphylococcus aureus ST772-MRSA-V, “Bengal Bay Clone”

    Get PDF
    Background: The PVL-positive ST772-MRSA-V is an emerging community-associated (CA-) MRSA clone that has been named Bengal Bay Clone since most patients have epidemiological connections to the Indian subcontinent. It is found increasingly common in other areas of the world. Methods: One isolate of ST772-MRSA-V was sequenced using the Illumina Genome Analyzer System. After initial assembling the multiple sequence contigs were analysed using different in-house annotation scripts. Results were compared to microarray hybridisation results of clinical isolates of ST772-MRSA-V, of related strains and to another ST772-MRSA-V genome sequence. Results: According to MLST e-burst analysis, ST772-MRSA-V belongs to Clonal Complex (CC)1, differing from ST1 only in one MLST allele (pta-22). However, there are several additional differences including agr alleles (group II rather than III), capsule type (5 rather than 8), the presence of the egc enterotoxin gene cluster and of the enterotoxin homologue ORF CM14 as well as the absence of the enterotoxin H gene seh. Enterotoxin genes sec and sel are present. ST772-MRSA-V harbours the genes encoding enterotoxin A (sea) and PVL (lukS/F-PV). Both are located on the same prophage. Conclusions: ST772-MRSA-V may have emerged from the same lineage as globally spread CC1 and CC5 strains. It has acquired a variety of virulence factors, and for a CA-MRSA strain it has an unusually high number of genes associated with antibiotic resistance

    Methicillin sensitive Staphylococcus aureus producing Panton-Valentine leukocidin toxin in Trinidad & Tobago: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Certain <it>Staphylococcus aureus </it>strains produce Panton-Valentine leukocidin, a toxin that lyses white blood cells causing extensive tissue necrosis and chronic, recurrent or severe infection. This report documents a confirmed case of methicillin-sensitive <it>Staphylococcus aureus </it>strain harboring Panton-Valentine leukocidin genes from Trinidad and Tobago. To the best of our knowledge, this is the first time that such a case has been identified and reported from this country.</p> <p>Case presentation</p> <p>A 13-year-old Trinidadian boy of African descent presented with upper respiratory symptoms and gastroenteritis-like syptoms. About two weeks later he was re-admitted to our hospital complaining of pain and weakness affecting his left leg, where he had received an intramuscular injection of an anti-emetic drug. He deteriorated and developed septic arthritis, necrotizing fasciitis and septic shock with acute respiratory distress syndrome, leading to death within 48 hours of admission despite intensive care treatment. The infection was caused by <it>S. aureus</it>. Bacterial isolates from specimens recovered from our patient before and after his death were analyzed using microarray DNA analysis and <it>spa </it>typing, and the results revealed that the <it>S. aureus </it>isolates belonged to clonal complex 8, were methicillin-susceptible and positive for Panton-Valentine leukocidin. An autopsy revealed multi-organ failure and histological tissue stains of several organs were also performed and showed involvement of his lungs, liver, kidneys and thymus, which showed Hassal's corpuscles.</p> <p>Conclusion</p> <p>Rapid identification of Panton-Valentine leukocidin in methicillin-sensitive <it>S. aureus </it>isolates causing severe infections is necessary so as not to miss their potentially devastating consequences. Early feedback from the clinical laboratories is crucial.</p

    Methicillin sensitive Staphylococcus aureus producing Panton-Valentine leukocidin toxin in Trinidad & Tobago: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Certain <it>Staphylococcus aureus </it>strains produce Panton-Valentine leukocidin, a toxin that lyses white blood cells causing extensive tissue necrosis and chronic, recurrent or severe infection. This report documents a confirmed case of methicillin-sensitive <it>Staphylococcus aureus </it>strain harboring Panton-Valentine leukocidin genes from Trinidad and Tobago. To the best of our knowledge, this is the first time that such a case has been identified and reported from this country.</p> <p>Case presentation</p> <p>A 13-year-old Trinidadian boy of African descent presented with upper respiratory symptoms and gastroenteritis-like syptoms. About two weeks later he was re-admitted to our hospital complaining of pain and weakness affecting his left leg, where he had received an intramuscular injection of an anti-emetic drug. He deteriorated and developed septic arthritis, necrotizing fasciitis and septic shock with acute respiratory distress syndrome, leading to death within 48 hours of admission despite intensive care treatment. The infection was caused by <it>S. aureus</it>. Bacterial isolates from specimens recovered from our patient before and after his death were analyzed using microarray DNA analysis and <it>spa </it>typing, and the results revealed that the <it>S. aureus </it>isolates belonged to clonal complex 8, were methicillin-susceptible and positive for Panton-Valentine leukocidin. An autopsy revealed multi-organ failure and histological tissue stains of several organs were also performed and showed involvement of his lungs, liver, kidneys and thymus, which showed Hassal's corpuscles.</p> <p>Conclusion</p> <p>Rapid identification of Panton-Valentine leukocidin in methicillin-sensitive <it>S. aureus </it>isolates causing severe infections is necessary so as not to miss their potentially devastating consequences. Early feedback from the clinical laboratories is crucial.</p

    ST2249-MRSA-III: a second major recombinant methicillin-resistant Staphylococcus aureus clone causing healthcare infection in the 1970s

    Get PDF
    Typing of healthcare-associated MRSA from Australia in the 1970s revealed a novel clone, ST2249-MRSA-III (CC45), present from 1973 to 1979. This clone was present prior to the Australian epidemic caused by the recombinant clone, ST239-MRSA-III. This study aimed to characterise the genome of ST2249-MRSA-III in order to establish its relationship to other MRSA clones. DNA microarray analysis was conducted and a draft genome sequence of ST2249 was obtained. The recombinant structure of the ST2249 genome was revealed by comparisons to publicly available ST239 and ST45 genomes. Microarray analysis of genomic DNA of 13 ST2249 isolates showed gross similarities with the ST239 chromosome in a segment around the origin of replication and with ST45 for the remainder of the chromosome. Recombination breakpoints were precisely determined by the changing pattern of nucleotide polymorphisms in the genome sequence of ST 2249 isolate SK1585 compared with ST239 and ST45. One breakpoint was identified to the right of oriC, between sites 1014 and 1065 of the gene D484_00045. Another was identified to the left of oriC, between sites 1185 and 1248 of D484_01632. These results indicate that ST2249 inherited approximately 35.3% of its chromosome from an ST239- like parent and 64.7% from an ST45-like parent. ST2249-MRSA-III resulted from a major recombination between parents that resemble ST239 and ST45. Although only limited Australian archival material is available, the oldest extant isolate of ST2249 predates the oldest Australian isolate of ST239 by three years. It is therefore plausible that these two recombinant clones were introduced into Australia separately

    Increased EMRSA-15 health-care worker colonization demonstrated in retrospective review of EMRSA hospital outbreaks

    Get PDF
    Background:Health care worker (HCW) colonization with methicillin resistant Staphylococcus aureus (MRSA) is a documented cause of hospital outbreaks and contributes to ongoing transmission. At Royal Perth Hospital (RPH) it had been anecdotally noted that the increasing prevalence of EMRSA-15 appeared to be associated with increased HCW colonization compared with Aus2/3-EMRSA. Hence we compared HCW colonization rates during outbreaks of EMRSA-15 and Aus2/3-EMRSA at a single institution.Methods:We performed a retrospective review of EMRSA-15 and Aus2/3-EMRSA outbreaks from 2000 –2009 at RPH, a quaternary hospital in Western Australia. Outbreak files were reviewed and relevant data extracted. Results:Ten EMRSA-15 outbreaks were compared with seven Aus2/3 outbreaks. The number of patients colonized was similar between EMRSA-15 and Aus2/ 3-EMRSA outbreaks (median 7 [range 3 – 20] and 11 [5 – 26], respectively; P = 0.07) but the number of HCWs colonized was significantl y higher in EMRSA-15 outbreaks compared to Aus2/3-EMRSA outbreaks (median 4 [range 0 – 15] and 2 [1-3], respectively; P = 0.013). The percentage of HCWs colonized was also higher in EMRSA-15 outbreaks versus Aus2/3-EMRSA outbreaks (median 3.4% [range 0 – 5.5%] and 0.81% [0.56 – 2.2%], respectively; P= 0.013).Conclusions:This study demonstrates a higher level of HCW colonization during EMRSA-15 outbreaks compared with Aus2/3-EMRSA outbreaks. This finding suggests that MRSA vary in their ability to colonize HCWs and contribute to outbreaks. MRSA type should be determined during outbreaks and future research should investigate the mechanisms by which EMRSA-15 contributes to increased HCW colonization
    corecore