52 research outputs found

    Geographical distribution of hepatitis C virus genotypes in blood donors:an international collaborative survey

    Get PDF
    The frequency of infection with the six classified major genotypes of hepatitis C virus (HCV) was investigated in 447 infected volunteer blood donors from the following nine countries: Scotland, Finland, The Netherlands, Hungary, Australia, Egypt, Japan, Hong Kong, and Taiwan. Viral sequences in plasma from blood donors infected with HCV were amplified in the 5'-noncoding region and were typed by restriction fragment length polymorphism analysis. Electrophoresis of DNA fragments produced by cleavage with HaeIII-RsaI and ScrFI-HinfI allowed HCV types 1 (or 5), 2, 3, 4, and 6 to be identified. Further analysis with MvaI-HinfI allowed sequences of the type 5 genotype to be distinguished from sequences of type 1 genotype. Types 1, 2, and 3 accounted for almost all infections in donors from Scotland, Finland, The Netherlands, and Australia. Types 2 and 3 were not found in the eastern European country (Hungary), where all but one of the donors were infected with type 1. Donors from Japan and Taiwan were infected only with type 1 or 2, while types 1, 2, and 6 were found in those from Hong Kong. HCV infection among Egyptians was almost always by type 4. Donors infected with HCV type 1 showed broad serological reactivity with all four antigens of the second generation Chiron RIBA-2 assay (Chiron Corporation, Emeryville, Calif.), while infection with divergent HCV genotypes elicited antibodies mainly reactive to c22-3 and c33c. Reactivities with antibodies 5-1-1 and c100-3 were infrequent and were generally weak, irrespective of the geographical origin of the donor. Because the envelope region of HCV is even more variable than the NS-4 region, it is likely that vaccines based on these proteins need to be multivalent and perhaps specifically adapted for different geographical regions.link_to_subscribed_fulltex

    Primary alterations during the development of hidradenitis suppurativa

    Get PDF
    BACKGROUND: Hidradenitis suppurativa (HS) is a chronic, inflammatory disease of the apocrine gland‐rich (AGR) skin region. The initial steps of disease development are not fully understood, despite intense investigations into immune alterations in lesional HS skin. OBJECTIVES: We aimed to systematically investigate the inflammatory molecules involved in three stages of HS pathogenesis, including healthy AGR, non‐lesional HS and lesional HS skin, with the parallel application of multiple mRNA and protein‐based methods. METHODS: Immune cell counts (T cells, dendritic cells, macrophages), Th1/Th17‐related molecules (IL‐12B, TBX21, IFNG, TNFA, IL‐17, IL10, IL‐23A, TGFB1, RORC, CCL20), keratinocyte‐related sensors (TLR2,4), mediators (S100A7, S100A8, S100A9, DEFB4B, LCN2, CAMP, CCL2) and pro‐inflammatory molecules (IL1B, IL6, TNFA, IL‐23A) were investigated in the three groups by RNASeq, RT‐qPCR, immunohistochemistry and immunofluorescence. RESULTS: Epidermal changes were already detectable in non‐lesional HS skin; the epidermal occurrence of antimicrobial peptides (AMPs), IL‐1ÎČ, TNF‐α and IL‐23 was highly upregulated compared with healthy AGR skin. In lesional HS epidermis, TNF‐α and IL‐1ÎČ expression remained at high levels while AMPs and IL‐23 increased even more compared with non‐lesional skin. In the dermis of non‐lesional HS skin, signs of inflammation were barely detectable (vs. AGR), while in the lesional dermis, the number of inflammatory cells and Th1/Th17‐related mediators were significantly elevated. CONCLUSIONS: Our findings that non‐lesional HS epidermal keratinocytes produce not only AMPs and IL‐1ÎČ but also high levels of TNF‐α and IL‐23 confirm the driver role of keratinocytes in HS pathogenesis and highlight the possible role of keratinocytes in the transformation of non‐inflammatory Th17 cells (of healthy AGR skin) into inflammatory cells (of HS) via the production of these mediators. The fact that epidermal TNF‐α and IL‐23 appear also in non‐lesional HS seems to prove these cytokines as excellent therapeutic targets

    The BTG2-PRMT1 module limits pre-B cell expansion by regulating the CDK4-Cyclin-D3 complex

    No full text
    Developing pre-B cells in the bone marrow alternate between proliferation and differentiation phases. We found that protein arginine methyl transferase 1 (PRMT1) and B cell translocation gene 2 (BTG2) are critical components of the pre-B cell differentiation program. The BTG2-PRMT1 module induced a cell-cycle arrest of pre-B cells that was accompanied by re-expression of Rag1 and Rag2 and the onset of immunoglobulin light chain gene rearrangements. We found that PRMT1 methylated cyclin-dependent kinase 4 (CDK4), thereby preventing the formation of a CDK4-Cyclin-D3 complex and cell cycle progression. Moreover, BTG2 in concert with PRMT1 efficiently blocked the proliferation of BCR-ABL1-transformed pre-B cells in vitro and in vivo. Our results identify a key molecular mechanism by which the BTG2-PRMT1 module regulates pre-B cell differ-entiation and inhibits pre-B cell leuke-mogenesis
    • 

    corecore