3,716 research outputs found

    Knight shift detection using gate-induced decoupling of the hyperfine interaction in quantum Hall edge channels

    Full text link
    A method for the observation of the Knight shift in nanometer-scale region in semiconductors is developed using resistively detected nuclear magnetic resonance (RDNMR) technique in quantum Hall edge channels. Using a gate-induced decoupling of the hyperfine interaction between electron and nuclear spins, we obtain the RDNMR spectra with or without the electron-nuclear spin coupling. By a comparison of these two spectra, the values of the Knight shift can be given for the nuclear spins polarized dynamically in the region between the relevant edge channels in a single two-dimensional electron system, indicating that this method has a very high sensitivity compared to a conventional NMR technique.Comment: 4 pages, 4 figures, to appear in Applied Physics Letter

    Gate-controlled nuclear magnetic resonance in an AlGaAs/GaAs quantum Hall device

    Full text link
    We study the resistively detected nuclear magnetic resonance (NMR) in an AlGaAs/GaAs quantum Hall device with a side gate. The strength of the hyperfine interaction between electron and nuclear spins is modulated by tuning a position of the two-dimensional electron systems with respect to the polarized nuclear spins using the side-gate voltages. The NMR frequency is systematically controlled by the gate-tuned technique in a semiconductor device.Comment: 3 pages, 4 figures, submitted to Appl. Phys. Let

    Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope

    Full text link
    We conducted local anodic oxidation (LAO) lithography in single-layer, bilayer, and multilayer graphene using tapping-mode atomic force microscope. The width of insulating oxidized area depends systematically on the number of graphene layers. An 800-nm-wide bar-shaped device fabricated in single-layer graphene exhibits the half-integer quantum Hall effect. We also fabricated a 55-nm-wide graphene nanoribbon (GNR). The conductance of the GNR at the charge neutrality point was suppressed at low temperature, which suggests the opening of an energy gap due to lateral confinement of charge carriers. These results show that LAO lithography is an effective technique for the fabrication of graphene nanodevices.Comment: 4 pages, 4 figure

    Electrical coherent control of nuclear spins in a breakdown regime of quantum Hall effect

    Full text link
    Using a conventional Hall-bar geometry with a micro-metal strip on top of the surface, we demonstrate an electrical coherent control of nuclear spins in an AlGaAs/GaAs semiconductor heterostructure. A breakdown of integer quantum Hall (QH) effect is utilized to dynamically polarize nuclear spins. By applying a pulse rf magnetic field with the metal strip, the quantum state of the nuclear spins shows Rabi oscillations, which is detected by measuring longitudinal voltage of the QH conductor.Comment: 3 pages, 4 figure

    Electrical polarization of nuclear spins in a breakdown regime of quantum Hall effect

    Full text link
    We have developed a method for electrical polarization of nuclear spins in quantum Hall systems. In a breakdown regime of odd-integer quantum Hall effect (QHE), excitation of electrons to the upper Landau subband with opposite spin polarity dynamically polarizes nuclear spins through the hyperfine interaction. The polarized nuclear spins in turn accelerate the QHE breakdown, leading to hysteretic voltage-current characteristics of the quantum Hall conductor.Comment: 3 pages, 4 figures, submitted to Appl. Phys. Let

    Electronic phase diagram of the layered cobalt oxide system, LixCoO2 (0.0 <= x <= 1.0)

    Get PDF
    Here we report the magnetic properties of the layered cobalt oxide system, LixCoO2, in the whole range of Li composition, 0 <= x <= 1. Based on dc-magnetic susceptibility data, combined with results of 59Co-NMR/NQR observations, the electronic phase diagram of LixCoO2 has been established. As in the related material NaxCoO2, a magnetic critical point is found to exist between x = 0.35 and 0.40, which separates a Pauli-paramagnetic and a Curie-Weiss metals. In the Pauli-paramagnetic regime (x <= 0.35), the antiferromagnetic spin correlations systematically increase with decreasing x. Nevertheless, CoO2, the x = 0 end member is a non-correlated metal in the whole temperature range studied. In the Curie-Weiss regime (x >= 0.40), on the other hand, various phase transitions are observed. For x = 0.40, a susceptibility hump is seen at 30 K, suggesting the onset of static AF order. A magnetic jump, which is likely to be triggered by charge ordering, is clearly observed at Tt = 175 K in samples with x = 0.50 (= 1/2) and 0.67 (= 2/3), while only a tiny kink appears at T = 210 K in the sample with an intermediate Li composition, x = 0.60. Thus, the phase diagram of the LixCoO2 system is complex, and the electronic properties are sensitively influenced by the Li content (x).Comment: 29 pages, 1 table, 9 figure

    Impact of lithium composition on the thermoelectric properties of the layered cobalt oxide system LixCoO2

    Get PDF
    Thermoelectric properties of the layered cobalt oxide system LixCoO2 were investigated in a wide range of Li composition, 0.98 >= x >= 0.35. Single-phase bulk samples of LixCoO2 were successfully obtained through electrochemical deintercalation of Li from the pristine LiCoO2 phase. While LixCoO2 with x >= 0.94 is semiconductive, the highly Li-deficient phase (0.75 >= x >= 0.35) exhibits metallic conductivity. The magnitude of Seebeck coefficient at 293 K (S293K) significantly depends on the Li content (x). The S293K value is as large as +70 ~ +100 uV/K for x >= 0.94, and it rapidly decreases from +90 uV/K to +10 uV/K as x is lowered within a Li composition range of 0.75 >= x >= 0.50. This behavior is in sharp contrast to the results of x <= 0.40 for which the S293K value is small and independent of x (+10 uV/K), indicating that a discontinuous change in the thermoelectric characteristics takes place at x = 0.40 ~ 0.50. The unusually large Seebeck coefficient and metallic conductivity are found to coexist in a narrow range of Li composition at about x = 0.75. The coexistence, which leads to an enhanced thermoelectric power factor, may be attributed to unusual electronic structure of the two-dimensional CoO2 block.Comment: 29 pages, 1 table, 8 figure

    Spin transport through a single self-assembled InAs quantum dot with ferromagnetic leads

    Full text link
    We have fabricated a lateral double barrier magnetic tunnel junction (MTJ) which consists of a single self-assembled InAs quantum dot (QD) with ferromagnetic Co leads. The MTJ shows clear hysteretic tunnel magnetoresistance (TMR) effect, which is evidence for spin transport through a single semiconductor QD. The TMR ratio and the curve shapes are varied by changing the gate voltage.Comment: 4 pages, 3 figure

    Impurity and edge roughness scattering in armchair graphene nanoribbons: Boltzmann approach

    Full text link
    The conductivity of armchair graphene nanoribbons in the presence of short-range impurities and edge roughness is studied theoretically using the Boltzmann transport equation for quasi-one-dimensional systems. As the number of occupied subbands increases, the conductivity due to short-range impurities converges towards the two-dimensional case. Calculations of the magnetoconductivity confirm the edge-roughness-induced dips at cyclotron radii close to the ribbon width suggested by the recent quantum simulations
    corecore